Extension of empirical specific cutting force model for the process of fine chip-removing milling



Specific cutting force is a frequently used parameter to classify and describe the energetic environment of mechanical machining operations. It defines the ratio of cutting forces and theoretical chip section during machining. This definition makes it possible to create general technological models for precise process planning. Classical models of cutting forces already indicate that specific cutting force cannot be modelled using a single low-level analytical function due to the marked presence of size effect. The problem is amplified in the case of micro-chip forming, where the relative scale of elastic and plastic deformations in the machined material differ from those experienced in conventional cutting conditions. Previous research proved that boundaries of specific cutting forces can be defined by values of exact uncut chip thicknesses, in which case the sections of specific cutting force may indicate different types of material deforming processes. The aim of current research presented in this paper is to extend the empirical model of specific cutting force for fine chip-removing cutting processes by identifying a new boundary section of uncut chip thickness. Therefore, a new boundary chip thickness was defined based on data obtained with reference to experimental cutting force. New boundary chip thickness follows the so-far proven tendencies of already known section borders and this enables the extension of the validity range of classical approaches presented by specific cutting force models beyond macro-scaled chip forming to micro-scaled chip forming processes. The extension of the model considers the effect of cutting parameters, primarily that of feed rate.


Boundary chip thickness Machining Milling Specific cutting force Size effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anand RS, Patra K, Steiner M (2014) Size effects in micro drilling of carbon fiber reinforced plastic composite. Prod Eng Res Dev 8(3):301–307. doi:10.1007/s11740-014-0526-2 CrossRefGoogle Scholar
  2. 2.
    Andersson C, Andersson M, Ståhl JE (2011) Experimental studies of cutting force variation in face milling. Int J Mach Tool Manu 51(1):67–76. doi:10.1016/j.ijmachtools.2010.09.004 CrossRefGoogle Scholar
  3. 3.
    Wojciechowski S (2015) The estimation of cutting forces and specific force coefficients during finishing ball end milling of inclined surfaces. Int J Mach Tool Manu 89:110–123. doi:10.1016/j.ijmachtools.2014.10.006 CrossRefGoogle Scholar
  4. 4.
    Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann-Manuf Techn 60(1):77–80. doi:10.1016/j.cirp.2011.03.084 CrossRefGoogle Scholar
  5. 5.
    Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J Mater Process Tech 212(3):542–552. doi:10.1016/j.jmatprotec.2011.05.020 CrossRefGoogle Scholar
  6. 6.
    Takács M, Verő B, Mészáros I (2003) Micromilling of metallic materials. J Mater Process Tech 138(1–3):152–155. doi:10.1016/S0924-0136(03)00064-5 CrossRefGoogle Scholar
  7. 7.
    Takács M, Verő B (2003) Material structural aspects of micro-scale chip removal. Mater Sci Forum 414–415:377–342. doi:10.4028/www.scientific.net/MSF.414-415.337 Google Scholar
  8. 8.
    Mészáros I, Farkas BZ, Keszenheimer A (2010) New cutting edge geometries for high precision hard turning. Proc4th CIRP Int Conf High Perform Cut 2:351–356Google Scholar
  9. 9.
    Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I (2014) Virtual process systems for part machining operations. CIRP Ann-Manuf Techn 63(2):585–605. doi:10.1016/j.cirp.2014.05.007 CrossRefGoogle Scholar
  10. 10.
    Campatelli G, Scippa A (2012) Prediction of milling cutting force coefficients for aluminum 6082-T4. Procedia CIRP 1:563–568. doi:10.1016/j.procir.2012.04.100 CrossRefGoogle Scholar
  11. 11.
    Ko JH, Yun WS, Cho DW, Ehmann KF (2002) Development of a virtual machining system, part 1: approximation of the size effect for cutting force prediction. Int J Mach Tool Manu 42(15):1595–1605. doi:10.1016/S0890-6955(02)00137-2 CrossRefGoogle Scholar
  12. 12.
    Srinivasa YV, Shunmugam MS (2013) Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int J Mach Tool Manu 67:18–27. doi:10.1016/j.ijmachtools.2012.12.004 CrossRefGoogle Scholar
  13. 13.
    de Oliveira FB, Rodrigues AR, Coelho RT, de Souza AF (2015) Size effect and minimum chip thickness in micromilling. Int J Mach Tool Manu 89:39–54. doi:10.1016/j.ijmachtools.2014.11.001 CrossRefGoogle Scholar
  14. 14.
    Wan M, Lu MS, Zhang WH, Yang Y (2012) A new ternary-mechanism model for the prediction of cutting forces in flat end milling. Int J Mach Tool Manu 57:34–45. doi:10.1016/j.ijmachtools.2012.02.003 CrossRefGoogle Scholar
  15. 15.
    Merdol SD, Altintas Y (2008) Virtual cutting and optimization of three-axis milling processes. Int J Mach Tool Manu 48(10):1063–1071. doi:10.1016/j.ijmachtools.2008.03.004 CrossRefGoogle Scholar
  16. 16.
    Tukora B, Szalay T (2011) Real-time determination of cutting force coefficients without cutting geometry restriction. Int J Mach Tool Manu 51(12):871–879. doi:10.1016/j.ijmachtools.2011.08.003 CrossRefGoogle Scholar
  17. 17.
    Denkena B, Vehmeyer J, Niederwestberg D, Maaß P (2014) Identification of the specific cutting force for geometrically defined cutting edges and varying cutting conditions. Int J Mach Tool Manu 82–83:42–49. doi:10.1016/j.ijmachtools.2014.03.009 CrossRefGoogle Scholar
  18. 18.
    Gonzalo O, Beristain J, Jauregi H, Sanz C (2010) A method for the identification of the specific force coefficients for mechanistic milling simulation. Int J Mach Tool Manu 50(9):765–774. doi:10.1016/j.ijmachtools.2010.05.009 CrossRefGoogle Scholar
  19. 19.
    Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tool Manu 54–55:34–45. doi:10.1016/j.ijmachtools.2011.12.008 CrossRefGoogle Scholar
  20. 20.
    Szalay T (2009) Modelling in metal cutting theory. In: Barišić B (ed) Concurrent Product and Technology Development. Fintrade and Tours, Kastav, pp 85–102. ISBN 978-953-96899-9-3Google Scholar
  21. 21.
    Balogun VA, Mativenga PT (2014) Impact of un-deformed chip thickness on specific energy in mechanical machining processes. J Clean Prod 69:260–268. doi:10.1016/j.jclepro.2014.01.036 CrossRefGoogle Scholar
  22. 22.
    Wan M, Zhang WH, Dang JW, Yang Y (2010) A novel cutting force modelling method for cylindrical end mill. Appl Math Model 34(3):823–836. doi:10.1016/j.apm.2009.09.012 CrossRefGoogle Scholar
  23. 23.
    Ahn IH, Moon SK, Hwang J (2015) A mechanistic cutting force model with consideration of the intrinsic and geometric size effects decoupled. Int J Adv Manuf Tech 81:745–753. doi:10.1007/s00170-015-7227-7 CrossRefGoogle Scholar
  24. 24.
    Zhang T, Liu Z, Xu C (2015) Theoretical modeling and experimental validation of specific cutting force for micro and milling. Int J Adv Manuf Tech 77:1433–1441. doi:10.1007/s00170-014-6549-1 CrossRefGoogle Scholar
  25. 25.
    Perez H, Diez E, Marquez JJ, Vizan A (2013) An enhanced method for cutting force estimation in peripheral milling. Int J Adv Manuf Tech 69:1731–1741. doi:10.1007/s00170-013-5153-0 CrossRefGoogle Scholar
  26. 26.
    Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann-Manuf Techn 58(2):566–587. doi:10.1016/j.cirp.2009.09.002 CrossRefGoogle Scholar
  27. 27.
    Fang F, Xu F, Lai M (2015) Size effect in material removal by cutting at nano scale. Int J Adv Manuf Tech 80:591–598. doi:10.1007/s00170-015-7032-3 CrossRefGoogle Scholar
  28. 28.
    Sambhav K, Kumar A, Choudhury SK (2011) Mechanistic force modeling of single point cutting tool in terms of grinding angles. Int J Mach Tool Manu 51(10-11):775–786. doi:10.1016/j.ijmachtools.2011.06.007 CrossRefGoogle Scholar
  29. 29.
    Subramanian M, Sakthivel M, Sooryaprakash K, Sudhakaran R (2013) Optimization of end mill tool geometry parameters for Al7075-T6 machining operations based on vibration amplitude by response surface methodology. Measurement 46(10):4005–4022. doi:10.1016/j.proeng.2013.09.144 CrossRefGoogle Scholar
  30. 30.
    Salguero J, Batista M, Calamaz M, Girot F, Marcos M (2013) Cutting forces parametric model for the dry high speed contour milling of aerospace aluminium alloys. Procedia Engineering 63:735–742. doi:10.1016/j.proeng.2013.08.215 CrossRefGoogle Scholar
  31. 31.
    Wan M, Zhang WH, Qin GH, Tan G (2007) Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills. Int J Mach Tool Manu 47(11):1767–1776. doi:10.1016/j.ijmachtools.2006.06.012 CrossRefGoogle Scholar
  32. 32.
    Wan M, Pan WJ, Zhang WH, Ma YC, Yang Y (2014) A unified instantaneous cutting force model for flat end mills with variable geometries. J Mater Process Tech 214(3):641–650. doi:10.1016/j.jmatprotec.2013.10.016 CrossRefGoogle Scholar
  33. 33.
    Wang M, Gao L, Zheng Y (2014) An examination of the fundamental mechanics of cutting force coefficients. Int J Mach Tool Manu 78:1–7. doi:10.1016/j.ijmachtools.2013.10.008 CrossRefGoogle Scholar
  34. 34.
    Kao YC, Nguyen NT, Chen MS, Su ST (2015) A prediction method of cutting force coefficients with helix angle of flat-end cutter and its application in a virtual three-axis milling simulation system. Int J Adv Manuf Tech 77:1793–1809. doi:10.1007/s00170-014-6550-8 CrossRefGoogle Scholar
  35. 35.
    Kienzle O, Victor H (1957) Spezifische Schnittkräfte bei der Metallbearbeitung. Werkstattstechnik und Maschinenbau 47:22–25Google Scholar
  36. 36.
    Biró I, Czampa M, Szalay T (2015) Experimental model for the main cutting force in face milling of a high strength structural steel. Period Polytech Mech 59(1):8–15. doi:10.3311/PPme.7516 CrossRefGoogle Scholar
  37. 37.
    Bali J (1985) Forgácsolás. (in Hungarian) Tankönyvkiadó, Budapest. ISBN: 963-18-0806-8Google Scholar
  38. 38.
    Liu K, Melkote SN (2005) Material strengthening mechanisms and their contribution to size effect in micro-cutting. J Manuf Sci E-T ASME 128(3):730–738. doi:10.1115/1.2193548 CrossRefGoogle Scholar
  39. 39.
    Afazov SM, Ratchev SM, Segal J, Popov AA (2012) Chatter modelling in micro-milling by considering process nonlinearities. Int J Mach Tool Manu 56:28–38. doi:10.1016/j.jmatprotec.2012.12.001 CrossRefGoogle Scholar
  40. 40.
    Rao VS, Rao PWM (2005) Modelling of tooth trajectory and process geometry in peripheral milling of curved surfaces. Int J Mach Tool Manu 45(6):617–630. doi:10.1016/j.ijmachtools.2004.10.004 CrossRefGoogle Scholar
  41. 41.
    Kumanchik LM, Schmitz TL (2007) Improved analytical chip thickness model for milling. Precision Engineering 31(3):317–324. doi:10.1016/j.precisioneng.2006.12.001 CrossRefGoogle Scholar
  42. 42.
    Kang YH, Zheng CM (2013) Mathematical modelling of chip thickness in micro-end- milling: a Fourier modelling. Appl Math Model 37(6):4208–4223. doi:10.1016/j.apm.2012.09.011 CrossRefGoogle Scholar
  43. 43.
    Sun Y, Guo Q (2011) Numerical simulation and prediction of cutting forces in five-axis milling processes with cutter run-out. Int J Mach Tool Manu 51(10-11):806–815. doi:10.1016/j.ijmachtools.2011.07.003 CrossRefGoogle Scholar
  44. 44.
    Takács M, Verő B (2007) Actual feed rate per tooth at micro milling. Mater Sci Forum 537–538:695–700. doi:10.4028/www.scientific.net/MSF.537-538.695 CrossRefGoogle Scholar
  45. 45.
    Biró I, Szalay T, Markos S (2013) Machinability of S960QL high strength structural steel: energetic description of cutting at small chip-thickness in face milling. International Conference on Innovative Technologies (IN-TECH 2013) 237-240. ISBN: 978-953-6326-88-4Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Manufacturing Science and EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations