Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel

  • Satoshi Kitayama
  • Hiroyasu Miyakawa
  • Masahiro Takano
  • Shuji Aiba


In this paper, cooling performance of conformal cooling channel in plastic injection molding (PIM) is numerically and experimentally examined. To examine the cooling performance, cycle time and warpage are considered. Melt temperature, injection time, packing pressure, packing time, cooling time, and cooling temperature are taken as the design variables. A multi-objective optimization of the process parameters is then performed. First, the process parameters of conformal cooling channel are optimized. Numerical simulation in the PIM is so intensive that a sequential approximate optimization using a radial basis function network is used to identify a pareto-frontier. It is found from the numerical result that the cooling performance of conformal cooling channel is much improved, compared to the conventional cooling channel. Based on the numerical result, the conformal cooling channel is developed by using additive manufacturing technology. The experiment is then carried out to examine the validity of the conformal cooling channel. Through numerical and experimental result, it is confirmed that the conformal cooling channel is effective to the short cycle time and the warpage reduction.


Plastic injection molding Conformal cooling channel Additive manufacturing Multi-objective optimization Sequential approximate optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang RY, Yang WH (2001) Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach. Int J Numer Methods Fluids 37:125–148CrossRefzbMATHGoogle Scholar
  2. 2.
    Kumar A, Ghoshdastidar PS, Muju MK (2002) Computer simulation of transport processes during injection mold-filling and optimization of the molding conditions. J Mater Process Technol 120:438–449CrossRefGoogle Scholar
  3. 3.
    Bikas A, Pantelelis N, Kanarachos A (2002) Computational tools for the optimal design of the injection moulding process. J Mater Process Technol 122:112–126CrossRefGoogle Scholar
  4. 4.
    Shi F, Lou ZL, Lu JG, Zhang YQ (2003) Optimisation of plastic injection moulding process with soft computing. Int J Adv Manuf Technol 21:656–661CrossRefGoogle Scholar
  5. 5.
    Kurtaran H, Ozcelik B, Erzurumlu T (2005) Warpage optimization of a bus ceiling lamp base using neural network and genetic algorithm. J Mater Process Technol 169:314–319CrossRefGoogle Scholar
  6. 6.
    Kurtaran H, Erzurumlu T (2006) Efficient warpage optimization of thin shell plastic parts using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 27:468–472CrossRefGoogle Scholar
  7. 7.
    Ozcelik B, Erzurumlu T (2006) Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. J Mater Process Technol 171:437–445CrossRefGoogle Scholar
  8. 8.
    Shen C, Wang L, Cao W (2007) Optimization for injection molding process conditions of the refrigerator top cover using combination method of artificial neural network and genetic algorithms. Polym-Plast Technol Eng 46:105–112CrossRefGoogle Scholar
  9. 9.
    Shen C, Wang L, Qian L (2007) Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. J Mater Process Technol 183:412–418CrossRefGoogle Scholar
  10. 10.
    Shie JR (2008) Optimization of injection molding process for contour distortions of polypropylene composite components by a radial basis function network. Int J Adv Manuf Technol 36:1091–1103CrossRefGoogle Scholar
  11. 11.
    Gao Y, Wang X (2008) An effective warpage optimization method in injection molding based on the Kriging model. Int J Adv Manuf Technol 37:953–960CrossRefGoogle Scholar
  12. 12.
    Mathivanan D, Parthasarathy NS (2009) Sink-mark minimization in injection molding through response surface regression modeling and genetic algorithm. Int J Adv Manuf Technol 45:867–874CrossRefGoogle Scholar
  13. 13.
    Dang XP (2014) General frameworks for optimization of plastic injection molding process parameters. Simul Model Pract Theory 41:15–27CrossRefGoogle Scholar
  14. 14.
    Gao Y, Wang X (2009) Surrogate-based process optimization for reducing warpage in injection molding. J Mater Process Technol 209:1302–1309CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Deng YM, Sun BS (2009) Injection molding warpage optimization based on a mode-pursuing sampling method. Polymer-Plast Technol Eng 48:767–774CrossRefGoogle Scholar
  16. 16.
    Deng YM, Zhang Y, Lam YC (2011) A hybrid of mode-pursuing sampling method and genetic algorithm for minimization of injection molding warpage. Mater Des 31:2118–2123CrossRefGoogle Scholar
  17. 17.
    Li C, Wang FL, Chang YQ, Liu Y (2010) A modified global optimization method based on surrogate model and its application in packing profile optimization of injection molding process. Int J Adv Manuf Technol 48:505–511CrossRefGoogle Scholar
  18. 18.
    Shi H, Gao Y, Wang X (2010) Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method. Int J Adv Manuf Technol 48:955–962CrossRefGoogle Scholar
  19. 19.
    Xia W, Luo B, Liao XP (2011) An enhanced optimization approach based on Gaussian process surrogate model for process control in injection molding. Int Adv Manuf Technol 56(9–12):929–942CrossRefGoogle Scholar
  20. 20.
    Cheng J, Liu Z, Tan J (2013) Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method. Int J Adv Manuf Technol 66:907–916CrossRefGoogle Scholar
  21. 21.
    Kitayama S, Onuki R, Yamazaki K (2014) Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization. Int J Adv Manuf Technol 72(5–8):827–838CrossRefGoogle Scholar
  22. 22.
    Zhao J, Cheng G, Ruan S, Li Z (2015) Multi-objective optimization design of injection molding process parameters based on the improved efficient global optimization algorithm and non-dominated sorting-based genetic algorithm. Int J Adv Manuf Technol 78:1813–1826Google Scholar
  23. 23.
    Wang X, Gu J, Shen C, Wang X (2015) Warpage optimization with dynamic injection molding technology and sequential optimization method. Int J Adv Manuf Technol 78:177–187CrossRefGoogle Scholar
  24. 24.
    Chen WC, Kurniawan D (2014) Process parameters optimization for multiple quality characteristics in plastic injection molding using Taguch method, BPNN, GA, and hybrid PSO-GA. Int J Precis Eng Manuf 15(8):1583–1593CrossRefGoogle Scholar
  25. 25.
    Huang MC, Tai CC (2001) The effective factors in the warpage problem of an injection-molded part with a thin shell feature. J Mater Process Technol 110:1–9CrossRefGoogle Scholar
  26. 26.
    Erzurumlu T, Ozcelik B (2006) Minimization of warpage and sink index in injection-molded thermoplastic parts using Taguchi optimization method. Mater Des 27:853–861CrossRefGoogle Scholar
  27. 27.
    Oktem H, Erzurumlu T, Uzman I (2007) Application of Taguchi optimization technique in determining plastic injection molding process parameters for a thin-shell part. Mater Des 28:1271–1278CrossRefGoogle Scholar
  28. 28.
    Dimla DE, Camilotto M, Miani F (2005) Design and optimization of conformal cooling channels in injection moulding tools. J Mater Process Technol 164–165:1294–1300CrossRefGoogle Scholar
  29. 29.
    Ahn DG (2011) Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools—state of the art. Int J Precis Eng Manuf 12(5):925–938CrossRefGoogle Scholar
  30. 30.
    Miettinen KM (1998) Nonlinear Multiobjective Optimization, Kluwer Academic PublishersGoogle Scholar
  31. 31.
    Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557CrossRefzbMATHGoogle Scholar
  32. 32.
    Nakayama H, Arakawa M, Sasaki R (2002) Simulation-based optimization using computational intelligence. Optim Eng 3:201–214MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kitayama S, Yamazaki K (2011) Simple estimate of the width in Gaussian kernel with adaptive scaling technique. Appl Soft Comput 11(8):4726–4737CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Satoshi Kitayama
    • 1
  • Hiroyasu Miyakawa
    • 2
  • Masahiro Takano
    • 2
  • Shuji Aiba
    • 3
  1. 1.Kanazawa UniversityKanazawaJapan
  2. 2.Industrial Research Institute of IshikawaKanazawaJapan
  3. 3.Sodick Co., Ltd.Kaga-shiJapan

Personalised recommendations