Advertisement

Evaluation of the shape deviation of non rigid parts from optical measurements

  • François Thiébaut
  • Cyril Lacroix
  • Loïc Andolfatto
  • Claire LartigueEmail author
ORIGINAL ARTICLE

Abstract

This paper deals with an approach to identify geometrical deviations of flexible parts from optical measurements. Each step of the approach defines a specific issue which we try to respond to. The problem of measurement uncertainties is solved using an original filtering method, which permits to only consider a few number of points. These points are registered on a mesh of the CAD model of the constrained geometry. The shape resulting from deflection can be identified through the finite-element simulation of the part’s deformation due to its own weight and the measuring set-up. Finally, geometrical deviations are obtained by subtracting geometrical deflections to measured geometrical deviations. The method is illustrated in an experimental test case.

Keywords

Measurement Shape deviation Flexible part Optical measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breteau P Simulation d’assemblage flexible par la mesure—application au domaine de l’aéronautique PhD these, (2009), Ecole Normale Supérieure de CachanGoogle Scholar
  2. 2.
    Li Y, Gu P (2005) Inspection of free-form shaped parts. Robot Comput-Integr Manuf 21(45):421–430CrossRefGoogle Scholar
  3. 3.
    Abenhaim GN, Desrochers A, Tahan AS (2013) An investigation of the repeatability of nonrigid parts measurements: a case study of an aluminum panel. Procedia 10:105–111CrossRefGoogle Scholar
  4. 4.
    Ascione R, Polini W (2010) Measurement of nonrigid freeform surfaces by coordinate measuring machine international. J Adv Manuf Technol 51:1055–1067CrossRefGoogle Scholar
  5. 5.
    Weckenmann A, Knauer M, Killmaier T (2001) Uncertainty of coordinate measurements on sheet-metal parts in the automotive industry. J Mater Process Technol 115(1):9–13CrossRefGoogle Scholar
  6. 6.
    Abenhaim GN, Tahan AS, Desrochers A, Maranzana R (2011) A novel approach for the inspection of flexible parts without the use of special fixtures. J Manuf Sci Eng 133:1–11CrossRefGoogle Scholar
  7. 7.
    Radvar-Esfahlan H, Tahan S-A. (2012) Nonrigid geometric metrology using generalized numerical inspection fixtures. Precis Eng 36(1):1–9CrossRefGoogle Scholar
  8. 8.
    Gentilini I, Shimada K (2011) Predicting and evaluated the post-assembly shape of thin-walled components via 3D laser digitization and FEA simulation of the assembly process. Comput-Aided Des 43:316–328CrossRefGoogle Scholar
  9. 9.
    Jaramillo A, Prieto F, Boulanger P (2013) Fast dimensional inspection of deformable parts from partial views. Comput Ind 64(9):1076–1081CrossRefGoogle Scholar
  10. 10.
    Jaramillo A, Prieto F, Boulanger P (2013) Deformable part inspection using a springmass system. Comput-Aided Des 45(89):1128–1137CrossRefGoogle Scholar
  11. 11.
    Lartigue C, Thiébaut F, Bourdet P, Anwer N Dimensional metrology of flexible parts: identification of geometrical deviations from optical measurements. Ser Adv Math Appl Sci 72(200-):196–203Google Scholar
  12. 12.
    Lartigue C, Contri A, Bourdet P (2002) Digitised point quality in relation with point exploitation. Measurement 32:193–203CrossRefGoogle Scholar
  13. 13.
    Ravishankar S, Dutt HNV, Gurumoorthy B (2012) AIWINa fast and jigless inspection technique for machined parts. Int J Adv Manuf Technol 62:231–240CrossRefGoogle Scholar
  14. 14.
    Huang W, Ceglarek D (2002) Mode-based decomposition of part form error by discrete-cosine-transform with implementation to assembly and stamping system with compliant parts. CIRP Ann Manuf Technol 51(1):21–26CrossRefGoogle Scholar
  15. 15.
    Franciosa P, Gerbino S, Patalano S (2010) Simulation of variational compliant assemblies with shape errors based on morphing mesh approach. The International Journal of Advanced Manufacturing Technology:1–15Google Scholar
  16. 16.
    Samper S, Formosa F (2007) Form defects tolerancing by natural modes analysis. J Comput Inf Sci Eng 7(1):44–51CrossRefGoogle Scholar
  17. 17.
    Audfray N, Mehdi-Souzani C, Lartigue C (2012) Assistance to automatic digitizing system selection for 3D part inspection. ASME 2012 11th Biennial Conference on Engineering Systems Design And Analysis, ESDA2012, Nantes (France), CDRom paper N 82319Google Scholar
  18. 18.
    Mehdi-Souzani C, Quinsat Y, Lartigue C, Bourdet P (2016) A knowledge database of qualified digitizing systems for the selection of the best system according to the application. CIRP J Manuf Sci Technol 13:15–23CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • François Thiébaut
    • 1
  • Cyril Lacroix
    • 1
  • Loïc Andolfatto
    • 2
  • Claire Lartigue
    • 1
    Email author
  1. 1.LURPA, ENS de CachanUniversité Paris-Sud, Université Paris SaclayCachanFrance
  2. 2.EPFL, École polytechnique fédérale de Lausanne, Laboratory for Hydraulic MachinesLausanneSwitzerland

Personalised recommendations