Advertisement

Using solvable classes in flowshop scheduling

  • A. M. Gruzlikov
  • N. V. Kolesov
  • Iu. M. Skorodumov
  • M. V. Tolmacheva
ORIGINAL ARTICLE

Abstract

A periodic processes scheduling problem appears for flexible manufacturing systems, computer systems, and other applications. The paper considers an approach to flow shop scheduling in terms of real-time distributed computing systems. The approach is based on the concept of solvable class of systems, for which simple optimal scheduling algorithms exist. The proposed approach belongs to the class of fast approximate algorithms; it slightly falls behind the known heuristic NEH algorithm regarding the optimality criterion, but it is much faster.

Keywords

Scheduling Flowshop Real-time system Solvable class of computing systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balashov VV (2007) Recommendation generation algorithms for scheduling of data exchange through a channel with centralized control. J Comput Syst Sci Int 46(6):887–894. doi: 10.1134/S1064230707060056 CrossRefzbMATHGoogle Scholar
  2. 2.
    Bettati R, Liu JW-S (1992) End to end scheduling to meet deadlines in distributed systems. In: Proceedings of the 12th international conference on distributed computing systems, pp 452– 459Google Scholar
  3. 3.
    Bocewicz G, Banaszak ZA (2013) Declarative approach to cyclic steady state space refinement: periodic process scheduling. Int J Adv Manuf Technol 67(1–4):137–155. doi: 10.1007/s00170-013-4760-0 CrossRefGoogle Scholar
  4. 4.
    Brucker P (2001) Scheduling algorithms, 3rd edn. Springer, NJ, USA. ISBN 3540415106CrossRefzbMATHGoogle Scholar
  5. 5.
    Brucker P, Jurisch B, Sievers B (1994) A branch and bound algorithm for the job-shop scheduling problem. Discret Appl Math 49(1–3):107–127. Special Volume Viewpoints on OptimizationMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Burkard R, Dell’Amico M, Martello S (2009) Assignment problems. Society for Industrial and Applied Mathematics, PA, USA. ISBN 0898716632, 9780898716634CrossRefzbMATHGoogle Scholar
  7. 7.
    Chakraborty UK, Laha D (2007) An improved heuristic for permutation flowshop scheduling. IJICT 1(1):89–97CrossRefGoogle Scholar
  8. 8.
    Cheng AMK (2002) Real-time systems: scheduling, analysis, and verification, 1st edn. Wiley, NY, USA. ISBN 0471184063CrossRefGoogle Scholar
  9. 9.
    Chin-Chia W, Wen-Chiung L, Wei-Chieh W (2007) A two-machine flowshop maximum tardiness scheduling problem with a learning effect. Int J Adv Manuf Technol 31(7):743–750Google Scholar
  10. 10.
    Conway RW, Maxwell WL, Miller LW (2003) Theory of scheduling. Dover Books on Computer Science Series, Dover, England. ISBN 9780486428178zbMATHGoogle Scholar
  11. 11.
    Cottet F, Delacroix J, Kaiser C, Mammeri Z Scheduling in Real-Time Systems 2002, p 282. ISBN: 0-470-84766-2Hardcoveroctober 2002. ISBN 9780470847664Google Scholar
  12. 12.
    Drozdowski M (2009) Scheduling for parallel processing, 1st edn. Springer Publishing Company, Incorporated, New York. ISBN 1848823096, 9781848823099CrossRefzbMATHGoogle Scholar
  13. 13.
    Gao J, Chen R (2011) An neh-based heuristic algorithm for distributed permutation flowshop scheduling problems. Sci Res Essays 14(6):3094–3100Google Scholar
  14. 14.
    Kolesov NV, Tolmacheva MV, Yukhta PV (2014) Real-time systems. scheduling, analysis and diagnosis. Concern CSRI Elektropribor, JSC, St.Peterburg, RussiazbMATHGoogle Scholar
  15. 15.
    Kolesov NV, Tolmacheva MV (2007) Design of computational processes in hierarchic systems. J Comput Syst Sci Int 46(2):262–268. doi: 10.1134/S106423070702013X CrossRefzbMATHGoogle Scholar
  16. 16.
    Kolesov NV, Tolmacheva MV, Yukhta PV (2012) Scheduling of computational processes in realtime distributed systems with uncertain task execution times. J Comput Syst Sci Int 51(5):636–647. doi: 10.1134/S1064230712040065 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Korytkowski P, Rymaszewski S, Wiśniewski T (2013) Ant colony optimization for job shop scheduling using multi-attribute dispatching rules. Int J Adv Manuf Technol 67(1):231–241. doi: 10.1007/s00170-013-4769-4 CrossRefGoogle Scholar
  18. 18.
    Kostenko VA, Gur’yanov ES (2005) An algorithm for scheduling exchanges over a bus with centralized control and an analysis of its efficiency. Programm Comput Softw 31(6):340–346. doi: 10.1007/s11086-005-0043-3 CrossRefzbMATHGoogle Scholar
  19. 19.
    Kuo-Ching Y (2008) Solving non-permutation flowshop scheduling problems by an effective iterated greedy heuristic. Int J Adv Manuf Technol 38(3):348–354Google Scholar
  20. 20.
    Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1):46–61. doi: 10.1145/321738.321743 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liu JWSW (2000) Real-time systems, 1st edn. Prentice Hall PTR, NJ, USA. ISBN 0130996513Google Scholar
  22. 22.
    Nagano MS, Miyata HH (2016) Review and classification of constructive heuristics mechanisms for nowait flow shop problem. Int J Adv Manuf Technol:1–14. doi: 10.1007/s00170-015-8209-5
  23. 23.
    Nawaz M, Enscore EE, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1):91–95CrossRefGoogle Scholar
  24. 24.
    Pan Q-K, Wang L, Zhao B-H (2007) An improved iterated greedy algorithm for the no-wait flow shop scheduling problem with makespan criterion. Int J Adv Manuf Technol 38(7):778–786Google Scholar
  25. 25.
    Pinedo ML (2008) Scheduling: Theory, algorithms, and systems, 3rd edn. Springer Publishing Company, Incorporated, New York. ISBN 0387789340, 9780387789347zbMATHGoogle Scholar
  26. 26.
    Rossi FL, Nagano MS, Neto RFT (2016) Evaluation of high performance constructive heuristics for the flow shop with makespan minimization. Int J Adv Manuf Technol:1–12. doi: 10.1007/s00170-016-8484-9
  27. 27.
    Rudek A, Rudek R (2011) On flowshop scheduling problems with the aging effect and resource allocation. Int J Adv Manuf Technol 62(1):135–145. doi: 10.1007/s00170-011-3809-1 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Salmasi N, Logendran R, Skandari MR (2011) Makespan minimization of a flowshop sequencedependent group scheduling problem. Int J Adv Manuf Technol 56(5):699–710CrossRefGoogle Scholar
  29. 29.
    Sinnen O (2007) Task scheduling for parallel systems (wiley series on parallel and distributed computing). Wiley-Interscience, New York. ISBN 0471735760CrossRefGoogle Scholar
  30. 30.
    Stankovic JA, Ramamritham K, Spuri M (1998) Deadline scheduling for real-time systems: edf and related algorithms. Kluwer Academic Publishers, MA, USA. ISBN 0792382692CrossRefzbMATHGoogle Scholar
  31. 31.
    Taillard E (1990) Some efficient heuristic methods for the flow shop sequencing problem. Eur J Oper Res 47(1):65–74MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285CrossRefzbMATHGoogle Scholar
  33. 33.
    Toporkov VV (2004) Models of distributed computations, 1st edn. Fizmatlit, Moscow, RussiazbMATHGoogle Scholar
  34. 34.
    Wang JB (2007) Flow shop scheduling problems with decreasing linear deterioration under dominant machines. Comput OR 34(7):2043–2058CrossRefzbMATHGoogle Scholar
  35. 35.
    Zheng D-Z, Wang L (2003) An effective hybrid heuristic for flow shop scheduling. Int J Adv Manuf Technol 21(1):38–44. doi: 10.1007/s001700300005 CrossRefGoogle Scholar
  36. 36.
    Zorin DA, Kostenko VA (2012) Algorithm for synthesis of real-time systems under reliability constraints. J Comput Syst Sci Int 51(3):410–417. doi: 10.1134/S106423071202013X MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • A. M. Gruzlikov
    • 1
  • N. V. Kolesov
    • 1
    • 2
  • Iu. M. Skorodumov
    • 1
  • M. V. Tolmacheva
    • 1
  1. 1.Concern CSRI ElektropriborSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations