Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys

  • Alireza Yazdipour
  • Akbar Heidarzadeh


The effect of rotational and traverse speeds during dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel plates was studied. The macrostructure and microstructure of the joints were examined using optical microscope and scanning electron microscope equipped with energy-dispersive X-ray analysis. The strength of the joints was measured using tensile test. The results showed that with increasing the rotational speed, the tensile strength of the joints increased up to a maximum value and then decreased. In addition, decreasing the traverse speed resulted in higher tensile strength. The 238-MPa maximum value of the tensile strength was achieved at rotational speed of 280 rpm and traverse speed of 160 mm/min. The formation of surface and cross section defects at lower rotational speeds and higher traverse speeds and existence of cracks and microcracks at higher rotational speeds were responsible for the lower tensile strengths of the corresponding joints. In addition, the FeAl3 intermetallic compound was detected in the interface of the steel particles and Al.


Friction stir welding Rotational speed Traverse speed Tensile strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev 56(1):1–48. doi: 10.1179/095066010X12777205875750 CrossRefGoogle Scholar
  2. 2.
    Farrokhi H, Heidarzadeh A, Saeid T (2013) Frictions stir welding of copper under different welding parameters and media. Sci Tech Weld Join 18(8):697–702. doi: 10.1179/1362171813Y.0000000148 CrossRefGoogle Scholar
  3. 3.
    Motalleb-nejad P, Saeid T, Heidarzadeh A, Darzi K, Ashjari M (2014) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded AZ31B magnesium alloy. J Mater Des 59:221–226. doi: 10.1016/j.matdes.2014.02.068 CrossRefGoogle Scholar
  4. 4.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001 CrossRefGoogle Scholar
  5. 5.
    Yazdipour A, Shafiei MA, Dehghani K (2009) Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A 527(1–2):192–197. doi: 10.1016/j.msea.2009.08.040 CrossRefGoogle Scholar
  6. 6.
    Yazdipour AR MA, Aval H, 4 (2011) An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083. Sadhana 36:505–514. doi: 10.1007/s12046-011-0032-6 CrossRefGoogle Scholar
  7. 7.
    Akinlabi ET, Akinlabi SA (2014) 6—friction stir welding of dissimilar metals. In: Givi MKB, Asadi P (eds) Advances in friction-stir welding and processing. Woodhead Publishing, pp 241-293. doi: 10.1533/9780857094551.241
  8. 8.
    Zhao Y, Lu Z, Yan K, Huang L (2015) Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. J Mater Des 65:675–681. doi: 10.1016/j.matdes.2014.09.046 CrossRefGoogle Scholar
  9. 9.
    Zhang J, Shen Y, Yao X, Xu H, Li B (2014) Investigation on dissimilar underwater friction stir lap welding of 6061-T6 aluminum alloy to pure copper. J Mater Des 64:74–80. doi: 10.1016/j.matdes.2014.07.036 CrossRefGoogle Scholar
  10. 10.
    Song Z, Nakata K, Wu A, Liao J, Zhou L (2014) Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. J Mater Des 57:269–278. doi: 10.1016/j.matdes.2013.12.040 CrossRefGoogle Scholar
  11. 11.
    Campo KN, Campanelli LC, Bergmann L, Santos JF, Bolfarini C (2014) Microstructure and interface characterization of dissimilar friction stir welded lap joints between Ti–6Al–4V and AISI 304. J Mater Des 56:139–145. doi: 10.1016/j.matdes.2013.11.002 CrossRefGoogle Scholar
  12. 12.
    Li B, Zhang Z, Shen Y, Hu W, Luo L (2014) Dissimilar friction stir welding of Ti–6Al–4V alloy and aluminum alloy employing a modified butt joint configuration: influences of process variables on the weld interfaces and tensile properties. J Mater Des 53:838–848. doi: 10.1016/j.matdes.2013.07.019 CrossRefGoogle Scholar
  13. 13.
    Saeid T, Abdollah-zadeh A, Sazgari B (2010) Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding. J Alloy Comp 490(1–2):652–655. doi: 10.1016/j.jallcom.2009.10.127 CrossRefGoogle Scholar
  14. 14.
    Ishida K, Gao Y, Nagatsuka K, Takahashi M, Nakata K (2015) Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel. J Alloy Comp 630:172–177. doi: 10.1016/j.jallcom.2015.01.004 CrossRefGoogle Scholar
  15. 15.
    Kasai H, Morisada Y, Fujii H (2015) Dissimilar FSW of immiscible materials: steel/magnesium. Mater Sci Eng A 624:250–255. doi: 10.1016/j.msea.2014.11.060 CrossRefGoogle Scholar
  16. 16.
    Jagadeesha CB (2014) Dissimilar friction stir welding between aluminum alloy and magnesium alloy at a low rotational speed. Mater Sci Eng A 616:55–62. doi: 10.1016/j.msea.2014.07.090 CrossRefGoogle Scholar
  17. 17.
    Habibnia M, Shakeri M, Nourouzi S, Givi MKB (2015) Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int J Adv Manuf Technol 76(5-8):819–829. doi: 10.1007/s00170-014-6306-5 CrossRefGoogle Scholar
  18. 18.
    Uzun H, Dalle Donne C, Argagnotto A, Ghidini T, Gambaro C (2005) Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. J Mater Des 26(1):41–46. doi: 10.1016/j.matdes.2004.04.002 CrossRefGoogle Scholar
  19. 19.
    Lee W-B, Schmuecker M, Mercardo UA, Biallas G, Jung S-B (2006) Interfacial reaction in steel–aluminum joints made by friction stir welding. Scripta Mater 55(4):355–358. doi: 10.1016/j.scriptamat.2006.04.028 CrossRefGoogle Scholar
  20. 20.
    Watanabe T, Takayama H, Yanagisawa A (2006) Joining of aluminum alloy to steel by friction stir welding. J Mater Proc Tech 178(1–3):342–349. doi: 10.1016/j.jmatprotec.2006.04.117 CrossRefGoogle Scholar
  21. 21.
    Sun YF, Fujii H, Takaki N, Okitsu Y (2013) Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique. J Mater Des 47:350–357. doi: 10.1016/j.matdes.2012.12.007 CrossRefGoogle Scholar
  22. 22.
    Chen T (2009) Process parameters study on FSW joint of dissimilar metals for aluminum–steel. J Mater Sci 44(10):2573–2580. doi: 10.1007/s10853-009-3336-8 CrossRefGoogle Scholar
  23. 23.
    Shen Z, Chen Y, Haghshenas M, Gerlich AP (2015) Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds. Int J Eng Sci Tech 18(2):270–277. doi: 10.1016/j.jestch.2014.12.008 CrossRefGoogle Scholar
  24. 24.
    Kundu S, Roy D, Bhola R, Bhattacharjee D, Mishra B, Chatterjee S (2013) Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium. J Mater Des 50:370–375. doi: 10.1016/j.matdes.2013.02.017 CrossRefGoogle Scholar
  25. 25.
    Tanaka T, Morishige T, Hirata T (2009) Comprehensive analysis of joint strength for dissimilar friction stir welds of mild steel to aluminum alloys. Scripta Mater 61(7):756–759. doi: 10.1016/j.scriptamat.2009.06.022 CrossRefGoogle Scholar
  26. 26.
    Elrefaey A, Gouda M, Takahashi M, Ikeuchi K (2005) Characterization of aluminum/steel lap joint by friction stir welding. J Mater Eng Perform 14(1):10–17. doi: 10.1361/10599490522310 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Materials EngineeringMalek-e-Ashtar University of TechnologyTehranIran
  2. 2.Department of Materials EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations