Skip to main content
Log in

Optimal fitting of strain-controlled flattenable mesh surfaces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A flattenable mesh surface is a polygonal mesh surface that can be unfolded into a planar patch without stretching any polygon. This paper presents a new method for computing a slightly stretched flattenable mesh surface M from a piecewise-linear surface patch PR 3, where the shape approximation error between M and P is minimized and the strain of stretching on M is controlled. Prior approaches result in either a flattenable surface that could be quite different from the input shape or a (discrete) developable surface has relative simple shape. The techniques investigated in this paper overcome these difficulties. First, we introduce a new surface modeling method to conduct a sequence of nearly isometric deformations to morph a flattenable mesh surface to a new shape which has a better approximation of the input surface. Second, in order to get better initial surfaces for fitting and overcome topological obstacles, a shape perturbation scheme is investigated to obtain the optimal surface fitting result. Last, to improve the scalability of our optimal surface fitting algorithm, a coarse-to-fine fitting framework is exploited so that very dense flattenable mesh surfaces can be modeled and boundaries of the input surfaces can be interpolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang CCL, Zhang Y, Sheung H (2010) From designing products to fabricating them from planar materials. IEEE Comput Graph Appl 30:74–85

    Article  Google Scholar 

  2. Kwok T-H, Yeung K-Y, Wang CC, Kwok T, Yeung K, Wang C (2014) Volumetric template fitting for human body reconstruction from incomplete data. J Manuf Syst 4(33):678–689

    Article  Google Scholar 

  3. do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  4. Liu Y, Pottmann H, Wallner J, Yang YL, Wang W (2006) Geometric modeling with conical meshes and developable surfaces. ACM Trans Graph 25:681–689

    Article  Google Scholar 

  5. Wang CCL (2008) Towards flattenable mesh surfaces. Comput Aided Des 40:109–122

    Article  Google Scholar 

  6. Wang CCL (2008) A least-norm approach to flattenable mesh surface processing. In: Proceedings of IEEE International Conference on Shape Modeling and Applications 2008, pp 131–138

  7. Leopoldseder S, Pottmann H (2008) Approximation of developable surfaces with cone spline surfaces. Comput Aided Des 30:571–582

    Article  MATH  Google Scholar 

  8. Pottmann H, Wallner J (1999) Approximation algorithms for developable surfaces. Computer Aided Geometric Design 16:539–556

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen HY, Lee IK, Leopoldseder S, Pottmann H, Randrup T, Wallner J (1999) On surface approximation using developable surfaces. Graphical Models and Image Processing 61:110–124

    Article  MATH  Google Scholar 

  10. Pottmann H, Wallner J (2001) Computational line geometry. Springer, Berlin

    MATH  Google Scholar 

  11. Chu CH, Sequin C (2002) Developable bezier patches: properties and design. Comput Aided Des 34:511–527

    Article  MATH  Google Scholar 

  12. Cerda E, Chaieb S, Melo F, Mahadevan L (1999) Conical dislocations in crumpling. Nature 401:46–49

    Article  Google Scholar 

  13. Decaudin P, Julius D, Wither J, Boissieux L, Sheffer A, Cani MP (2006) Virtual garments: a fully geometric approach for clothing design. Computer Graphics Forum 25:625–634

    Article  Google Scholar 

  14. Tang K, Chen M (2009) Quasi-developable mesh surface interpolation via mesh deformation. IEEE Trans Vis Comput Graph 15:518–528

    Article  Google Scholar 

  15. Wang CCL, Tang K (2004) Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches. Vis Comput 20:521–539

    Article  Google Scholar 

  16. Bo P, Wang W (2007) Geodesic-controlled developable surfaces for modeling paper bending. Computer Graphics Forum 26:365–374

    Article  Google Scholar 

  17. Kilian M, Flöry S, Chen Z, Mitra N, Sheffer A, Pottmann H (2008) Curved folding. ACM Trans Graph 27:75:1–75:9

    Article  Google Scholar 

  18. Levy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: Proceedings of SIGGRAPH ’02, pp 362–371

  19. Desbrun M, Meyer M, Alliez P (2002) Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21:209–218

    Article  Google Scholar 

  20. Sheffer A, Levy B, Mogilnitsky M, Bogomyakov A (2005) Abf ++: fast and robust angle based flattening. ACM Trans Graph 24:311–330

    Article  Google Scholar 

  21. Karni Z, Gotsman C, Gortler SJ (2005) Free-boundary linear parameterization of 3d meshes in the presence of constraints. In: Proceedings of Shape Modeling and Applications 2005, pp 268–277

  22. Liu L, Zhang L, Xu Y, Gotsman C, Gortler SJ (2008) A local/global approach to mesh parameterization. Computer Graphics Forum 27:1495–1504

    Article  Google Scholar 

  23. Azariadis P, Aspragathos N (1997) Design of plane developments of doubly curved surfaces. Comput Aided Des 29:675–685

    Article  Google Scholar 

  24. Aono M, Breen DE, Wozny MJ (2001) Modeling methods for the design of 3d broadcloth composite parts. Comput Aided Des 33:989–1007

    Article  Google Scholar 

  25. Wang CCL, Smith SSF, Yuen MMF (2002) Surface flattening based on energy model. Comput Aided Des 34:823–833

    Article  Google Scholar 

  26. McCartney J, Hinds BK, Chong KW (2005) Pattern flattening for orthotropic materials. Comput Aided Des 37:631–644

    Article  Google Scholar 

  27. Wang CCL, Tang K, Yeung BML (2005) Freeform surface flattening based on fitting a woven mesh model. Comput Aided Des 37:799–814

    Article  Google Scholar 

  28. Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp 157–186

  29. Litke N, Levin A, Schröder P (2001) Fitting subdivision surfaces. In: Proceedings of the Conference on Visualization’01, pp 319–324

  30. Botsch M, Kobbelt L (2004) A remeshing approach to multiresolution modeling. In: Proceedings of the 2004 Symposium on Geometry processing, pp 185–192

  31. Marinov M, Kobbelt L (2004) Optimization techniques for approximation with subdivision surfaces. In: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, pp 113–122

  32. Shi L, Yu Y, Bell N, Feng WW (2006) A fast multigrid algorithm for mesh deformation. ACM Trans Graph 25:1108–1117

    Article  Google Scholar 

  33. Roy M, Foufou S, Truchetet F (2002) Generic attribute deviation metric for assessing mesh simplification algorithm quality. In: Proceedings of the IEEE International Conference on Image Processing, pp 817–820

  34. Larsen E, Gottschalk S, Lin MC, Manocha D (2000) Fast proximity queries with swept sphere volumes. In: Proceedings of International Conference on Robotics and Automation, pp 3719–3726

  35. Meyer M, Desbrun M, Schröder P, Barr AH (2002) Discrete differential-geometry operators for triangulated 2-manifolds. In: Proceedings of vismath ’02

  36. Goldenthal R, Harmon D, Fattal R, Bercovier M, Grinspun E (2007) Efficient simulation of inextensible cloth. ACM Trans Graph 26(3). doi:10.1145/1276377.1276438

  37. Baraff D, Witkin A (1998) Large steps in cloth simulation. In: Proceedings of SIGGRAPH 98, pp 43–54

  38. Liu Y, Pottmann H, Wang W (2006) Constrained 3d shape reconstruction using a combination of surface fitting and registration. Comput Aided Des 38:572–583

    Article  Google Scholar 

  39. Moenning C, Dodgson NA (2003) Fast marching farthest point sampling. In: Technical report

  40. Sorkine O, Cohen-Or D (2004) Least-squares meshes. In: Proceedings of the Shape Modeling International 2004, pp 191– 199

  41. Frandsen PE, Jonasson K, Nielsen HB, Tingleff O (2004) Unconstrained optimization online course notes

  42. Valette S, Chassery J, Prost R (2008) Generic remeshing of 3d triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans Vis Comput Graph 14:369–381

    Article  Google Scholar 

  43. Liu Y, Wang W, Levy B, Sun F, Yan D-M, Lu L, Yang C (2009) On centroidal voronoi tessellation—energy smoothness and fast computation. ACM Trans Graph 28 101:1–17

    Google Scholar 

  44. Kobbelt L, Schröder P (1998) A multiresolution framework for variational subdivision. ACM Trans Graph 17:209– 237

    Article  Google Scholar 

  45. Yamada A, Furuhata T, Shimada K, Hou K (1999) A discrete spring model for generating fair curves and surfaces. In: Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, pp 270–279

  46. Barequet G, Sharir M (1993) Filling gaps in the boundary of a polyhedron. Computer Aided Geometric Design 12:207– 229

    Article  MathSciNet  MATH  Google Scholar 

  47. Sonka M, Hlavac V, Boyle R (1998) Image processing, analysis and machine vision. Chapman & Hall

  48. Wang CCL (2008) Flattenable mesh surface fitting on boundary curves. ASME J Comput Inf Sci Eng 8 (2) 021006:1–10

    Google Scholar 

  49. Rose K, Sheffer A, Wither J, Cani M-P, Thibert B (2007) Developable surfaces from arbitrary sketched boundaries. In: Proceedings of the fifth Eurographics symposium on Geometry processing, pp 163–172

  50. Wang CCL, Tang K (2005) Optimal boundary triangulations of an interpolating ruled surface. ASME J Comput Inf Sci Eng 5(4):291–301

    Article  Google Scholar 

  51. Frey WH (2004) Modeling buckled developable surfaces by triangulation. Comput Aided Des 36(4):299–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, C.C.L. & Ramani, K. Optimal fitting of strain-controlled flattenable mesh surfaces. Int J Adv Manuf Technol 87, 2873–2887 (2016). https://doi.org/10.1007/s00170-016-8669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8669-2

Keywords

Navigation