Advertisement

Optimal fitting of strain-controlled flattenable mesh surfaces

  • Yunbo Zhang
  • Charlie C. L. Wang
  • Karthik Ramani
ORIGINAL ARTICLE

Abstract

A flattenable mesh surface is a polygonal mesh surface that can be unfolded into a planar patch without stretching any polygon. This paper presents a new method for computing a slightly stretched flattenable mesh surface M from a piecewise-linear surface patch PR 3, where the shape approximation error between M and P is minimized and the strain of stretching on M is controlled. Prior approaches result in either a flattenable surface that could be quite different from the input shape or a (discrete) developable surface has relative simple shape. The techniques investigated in this paper overcome these difficulties. First, we introduce a new surface modeling method to conduct a sequence of nearly isometric deformations to morph a flattenable mesh surface to a new shape which has a better approximation of the input surface. Second, in order to get better initial surfaces for fitting and overcome topological obstacles, a shape perturbation scheme is investigated to obtain the optimal surface fitting result. Last, to improve the scalability of our optimal surface fitting algorithm, a coarse-to-fine fitting framework is exploited so that very dense flattenable mesh surfaces can be modeled and boundaries of the input surfaces can be interpolated.

Keywords

Surface approximation Flattenable mesh surface Optimization Stretching controlled Coarse-to-fine fitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang CCL, Zhang Y, Sheung H (2010) From designing products to fabricating them from planar materials. IEEE Comput Graph Appl 30:74–85CrossRefGoogle Scholar
  2. 2.
    Kwok T-H, Yeung K-Y, Wang CC, Kwok T, Yeung K, Wang C (2014) Volumetric template fitting for human body reconstruction from incomplete data. J Manuf Syst 4(33):678–689CrossRefGoogle Scholar
  3. 3.
    do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  4. 4.
    Liu Y, Pottmann H, Wallner J, Yang YL, Wang W (2006) Geometric modeling with conical meshes and developable surfaces. ACM Trans Graph 25:681–689CrossRefGoogle Scholar
  5. 5.
    Wang CCL (2008) Towards flattenable mesh surfaces. Comput Aided Des 40:109–122CrossRefGoogle Scholar
  6. 6.
    Wang CCL (2008) A least-norm approach to flattenable mesh surface processing. In: Proceedings of IEEE International Conference on Shape Modeling and Applications 2008, pp 131–138Google Scholar
  7. 7.
    Leopoldseder S, Pottmann H (2008) Approximation of developable surfaces with cone spline surfaces. Comput Aided Des 30:571–582CrossRefzbMATHGoogle Scholar
  8. 8.
    Pottmann H, Wallner J (1999) Approximation algorithms for developable surfaces. Computer Aided Geometric Design 16:539–556MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen HY, Lee IK, Leopoldseder S, Pottmann H, Randrup T, Wallner J (1999) On surface approximation using developable surfaces. Graphical Models and Image Processing 61:110–124CrossRefzbMATHGoogle Scholar
  10. 10.
    Pottmann H, Wallner J (2001) Computational line geometry. Springer, BerlinzbMATHGoogle Scholar
  11. 11.
    Chu CH, Sequin C (2002) Developable bezier patches: properties and design. Comput Aided Des 34:511–527CrossRefzbMATHGoogle Scholar
  12. 12.
    Cerda E, Chaieb S, Melo F, Mahadevan L (1999) Conical dislocations in crumpling. Nature 401:46–49CrossRefGoogle Scholar
  13. 13.
    Decaudin P, Julius D, Wither J, Boissieux L, Sheffer A, Cani MP (2006) Virtual garments: a fully geometric approach for clothing design. Computer Graphics Forum 25:625–634CrossRefGoogle Scholar
  14. 14.
    Tang K, Chen M (2009) Quasi-developable mesh surface interpolation via mesh deformation. IEEE Trans Vis Comput Graph 15:518–528CrossRefGoogle Scholar
  15. 15.
    Wang CCL, Tang K (2004) Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches. Vis Comput 20:521–539CrossRefGoogle Scholar
  16. 16.
    Bo P, Wang W (2007) Geodesic-controlled developable surfaces for modeling paper bending. Computer Graphics Forum 26:365–374CrossRefGoogle Scholar
  17. 17.
    Kilian M, Flöry S, Chen Z, Mitra N, Sheffer A, Pottmann H (2008) Curved folding. ACM Trans Graph 27:75:1–75:9CrossRefGoogle Scholar
  18. 18.
    Levy B, Petitjean S, Ray N, Maillot J (2002) Least squares conformal maps for automatic texture atlas generation. In: Proceedings of SIGGRAPH ’02, pp 362–371Google Scholar
  19. 19.
    Desbrun M, Meyer M, Alliez P (2002) Intrinsic parameterizations of surface meshes. Computer Graphics Forum 21:209–218CrossRefGoogle Scholar
  20. 20.
    Sheffer A, Levy B, Mogilnitsky M, Bogomyakov A (2005) Abf ++: fast and robust angle based flattening. ACM Trans Graph 24:311–330CrossRefGoogle Scholar
  21. 21.
    Karni Z, Gotsman C, Gortler SJ (2005) Free-boundary linear parameterization of 3d meshes in the presence of constraints. In: Proceedings of Shape Modeling and Applications 2005, pp 268–277Google Scholar
  22. 22.
    Liu L, Zhang L, Xu Y, Gotsman C, Gortler SJ (2008) A local/global approach to mesh parameterization. Computer Graphics Forum 27:1495–1504CrossRefGoogle Scholar
  23. 23.
    Azariadis P, Aspragathos N (1997) Design of plane developments of doubly curved surfaces. Comput Aided Des 29:675–685CrossRefGoogle Scholar
  24. 24.
    Aono M, Breen DE, Wozny MJ (2001) Modeling methods for the design of 3d broadcloth composite parts. Comput Aided Des 33:989–1007CrossRefGoogle Scholar
  25. 25.
    Wang CCL, Smith SSF, Yuen MMF (2002) Surface flattening based on energy model. Comput Aided Des 34:823–833CrossRefGoogle Scholar
  26. 26.
    McCartney J, Hinds BK, Chong KW (2005) Pattern flattening for orthotropic materials. Comput Aided Des 37:631–644CrossRefGoogle Scholar
  27. 27.
    Wang CCL, Tang K, Yeung BML (2005) Freeform surface flattening based on fitting a woven mesh model. Comput Aided Des 37:799–814CrossRefGoogle Scholar
  28. 28.
    Floater MS, Hormann K (2005) Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp 157–186Google Scholar
  29. 29.
    Litke N, Levin A, Schröder P (2001) Fitting subdivision surfaces. In: Proceedings of the Conference on Visualization’01, pp 319–324Google Scholar
  30. 30.
    Botsch M, Kobbelt L (2004) A remeshing approach to multiresolution modeling. In: Proceedings of the 2004 Symposium on Geometry processing, pp 185–192Google Scholar
  31. 31.
    Marinov M, Kobbelt L (2004) Optimization techniques for approximation with subdivision surfaces. In: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, pp 113–122Google Scholar
  32. 32.
    Shi L, Yu Y, Bell N, Feng WW (2006) A fast multigrid algorithm for mesh deformation. ACM Trans Graph 25:1108–1117CrossRefGoogle Scholar
  33. 33.
    Roy M, Foufou S, Truchetet F (2002) Generic attribute deviation metric for assessing mesh simplification algorithm quality. In: Proceedings of the IEEE International Conference on Image Processing, pp 817–820Google Scholar
  34. 34.
    Larsen E, Gottschalk S, Lin MC, Manocha D (2000) Fast proximity queries with swept sphere volumes. In: Proceedings of International Conference on Robotics and Automation, pp 3719–3726Google Scholar
  35. 35.
    Meyer M, Desbrun M, Schröder P, Barr AH (2002) Discrete differential-geometry operators for triangulated 2-manifolds. In: Proceedings of vismath ’02Google Scholar
  36. 36.
    Goldenthal R, Harmon D, Fattal R, Bercovier M, Grinspun E (2007) Efficient simulation of inextensible cloth. ACM Trans Graph 26(3). doi: 10.1145/1276377.1276438
  37. 37.
    Baraff D, Witkin A (1998) Large steps in cloth simulation. In: Proceedings of SIGGRAPH 98, pp 43–54Google Scholar
  38. 38.
    Liu Y, Pottmann H, Wang W (2006) Constrained 3d shape reconstruction using a combination of surface fitting and registration. Comput Aided Des 38:572–583CrossRefGoogle Scholar
  39. 39.
    Moenning C, Dodgson NA (2003) Fast marching farthest point sampling. In: Technical reportGoogle Scholar
  40. 40.
    Sorkine O, Cohen-Or D (2004) Least-squares meshes. In: Proceedings of the Shape Modeling International 2004, pp 191– 199Google Scholar
  41. 41.
    Frandsen PE, Jonasson K, Nielsen HB, Tingleff O (2004) Unconstrained optimization online course notesGoogle Scholar
  42. 42.
    Valette S, Chassery J, Prost R (2008) Generic remeshing of 3d triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans Vis Comput Graph 14:369–381CrossRefGoogle Scholar
  43. 43.
    Liu Y, Wang W, Levy B, Sun F, Yan D-M, Lu L, Yang C (2009) On centroidal voronoi tessellation—energy smoothness and fast computation. ACM Trans Graph 28 101:1–17Google Scholar
  44. 44.
    Kobbelt L, Schröder P (1998) A multiresolution framework for variational subdivision. ACM Trans Graph 17:209– 237CrossRefGoogle Scholar
  45. 45.
    Yamada A, Furuhata T, Shimada K, Hou K (1999) A discrete spring model for generating fair curves and surfaces. In: Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, pp 270–279Google Scholar
  46. 46.
    Barequet G, Sharir M (1993) Filling gaps in the boundary of a polyhedron. Computer Aided Geometric Design 12:207– 229MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Sonka M, Hlavac V, Boyle R (1998) Image processing, analysis and machine vision. Chapman & HallGoogle Scholar
  48. 48.
    Wang CCL (2008) Flattenable mesh surface fitting on boundary curves. ASME J Comput Inf Sci Eng 8 (2) 021006:1–10Google Scholar
  49. 49.
    Rose K, Sheffer A, Wither J, Cani M-P, Thibert B (2007) Developable surfaces from arbitrary sketched boundaries. In: Proceedings of the fifth Eurographics symposium on Geometry processing, pp 163–172Google Scholar
  50. 50.
    Wang CCL, Tang K (2005) Optimal boundary triangulations of an interpolating ruled surface. ASME J Comput Inf Sci Eng 5(4):291–301CrossRefGoogle Scholar
  51. 51.
    Frey WH (2004) Modeling buckled developable surfaces by triangulation. Comput Aided Des 36(4):299–313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Yunbo Zhang
    • 1
    • 2
  • Charlie C. L. Wang
    • 2
    • 3
  • Karthik Ramani
    • 1
  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mechanical and Automation EngineeringThe Chinese Univerity of Hong KongSha TinHong Kong
  3. 3.Shenzhen Institues of Advanced TechnologyShenzhenChina

Personalised recommendations