Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Application of the Taguchi method to improve a medical device cutting process

Abstract

Companies currently are immersed in a highly competitive world; therefore, they must adopt continuous process and product improvement techniques to remain in business and retain loyal customers. This paper presents the analysis of a medical device manufacturing company to determine what factors influence the length variation of plastic tubes in a cutting process. These tubes are part of intensive care sets; therefore, their length and diameter are critical features. Recently, products were rejected for not meeting the tube length specification, causing customer complaints regarding product quality. The Taguchi method was applied to find significant factors that determine the best configuration in the cutting process to approximate this quality characteristic to its desired target value. Important factors and their corresponding best levels were identified. After the proposed process adjustment was implemented, the process capability index (Cpk) increased from 0.90 to 1.58, which indicated a considerable reduction in customer complaints and corresponding costs.

References

  1. 1.

    Escanciano C, Iglesias F (2012) Quality management and integrated total quality in Spanish mining: results of an empirical study. DYNA 171:167–174

  2. 2.

    Sitnikov C (2012) Six sigma as a strategic tool for companies. Young Econ J Rev Tinerilor Econ 19:94–102

  3. 3.

    Vijaya SM (2013) Synergies of lean six sigma. IUP J Oper Manag 1:21–31

  4. 4.

    Gil-Gómez H, Oltra-Badenes R, Adarme-Jaimes W (2014) Service quality management based on the application of the ITIL standard. DYNA 186:51–56. http://dx.doi.org/10.15446/dyna.v81n186.37953

  5. 5.

    Antony J, Capon N (1998) Teaching experimental design techniques to industrial engineers. Int J Eng Educ 5:335–343. doi:10.1108/00438020110391873

  6. 6.

    Mathews PG (2005) Design of experiments with Minitab; ASQ Quality press. Milwaukee, USA

  7. 7.

    Antony J, Antony FJ (2001) Teaching the Taguchi method to industrial engineers. Work Study 4:141–149. doi:10.1108/00438020110391873

  8. 8.

    Peker M, Sen B, Kumru PY (2012) An efficient solving of the traveling salesman problem: the ant colony system having parameters optimized by the Taguchi method. Turkish J Electric Eng Comput Sci 1:2015–2036. doi:10.3906/elk-1109-44

  9. 9.

    Antony J, Perry D, Wang C, Kumar M (2006) An application of Taguchi method experimental design for new product design and development process. Assem Autom 1:18–24. doi:10.1108/01445150610645611

  10. 10.

    Agastra E, Pelosi G, Selleri S, Taddei R (2013) Taguchi’s method for multi-objective optimization problems. Int J RF Microwave Comput Aided Eng 3:357–366. doi:10.1002/mmce.20680

  11. 11.

    Roy RK (2001) Design of experiments using the Taguchi approach: 16 steps to product and process improvement. John Wiley & Sons Inc, New York, USA

  12. 12.

    Taguchi G, Jugulum R (2002) The Mahalanobis-Taguchi strategy: a pattern technology system. John Wiley & Sons, New York, USA

  13. 13.

    Gu F, Hall P, Miles NJ, Ding Q, Wu T (2014) Improvement of mechanical properties of recycled plastic blends via optimizing processing parameters using the Taguchi method and principal component analysis. Mater Des 62:189–198. doi:10.1016/j.matdes.2014.05.013

  14. 14.

    Inei-Shizukawa G, Velasco-Bedrán HA, Gutiérrez-López GF, Hernández-Sánchez H (2009) Statistical approach to optimization of ethanol fermentation by saccharomyces cerevisiae in the presence of Valfor® 100 Zeolite Naa. Revista de Ingeniería Química 3:265–270

  15. 15.

    Rico L, Noriega S, Garcia JL, Martinez EA, Ñeco R, Estrada FJ (2010) Effect of the side cutting–edge angle on the surface roughness for aluminum 1350 in the turning operation by Taguchi method. J Appl Res Technol 3:395–405

  16. 16.

    Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. John Wiley & Sons, New Jersey, USA

  17. 17.

    Akbarzadeh A, Kouravand S, Imani B (2013) Robust design of a bimetallic micro thermal sensor using Taguchi method. J Optim Theory Appl 1:188–198. doi:10.1007/s10957-012-0171-x

  18. 18.

    Ramkumar R, Ragupathy A (2013) Optimization of cooling tower performance analysis using Taguchi method. Therm Sci 2:457–470. doi:10.2298/TSCI110528024R

  19. 19.

    Senthilkumar N, Ganapathy T, Tamizharasan T (2014) Optimization of machining and geometrical parameters in turning process using Taguchi method. Aust J Mech Eng 2:233–246

  20. 20.

    Deniz F (2013) Optimization of biosorption conditions for color removal by Taguchi DOE methodology. Environmental Progress and Sustainable Energy 32(4):1129–1133. doi:10.1002/ep.11740

  21. 21.

    KoonChun L, SooKing L, Pehchiong T (2015) Optimization of electrostatic separation process for maximizing biowaste recovery using Taguchi method and ANOVA. Polish Journal of Environmental Studies 3:1125–1131. doi: 10.15244/pjoes/30927

  22. 22.

    Chil-Chyuan K, Hsin-You L (2015) Dimensional accuracy optimization of the micro-plastic injection molding process using the Taguchi design method. Mater Sci Medziagotyra 2:244–248. doi:10.5755/j01.mm.21.2.5864

  23. 23.

    Sun Y, Zuo D, Zhu Y, Li J (2013) Using Taguchi method to optimize polishing parameters in ice fixed abrasive polishing. Mater Manuf Process 28:923–927. doi:10.1080/10426914.2013.792419

  24. 24.

    Montgomery DC (2009) Design and analysis of experiments, 7th edn. John Wiley & Sons, New Jersey, USA

  25. 25.

    Co HC (2008) Confirmation testing of the Taguchi methods by artificial neural-networks simulation. Int J Prod Res 17:4671–4685. doi:10.1080/00207540701213502

  26. 26.

    Chun-Liang L, Yi-Shun C, Yi-Hua L, Yeh-Hsiang H, Shu-Syuan H (2013) Optimization of a fuzzy-logic-control-based five-stage battery charger using a fuzzy-based Taguchi method. Energies 7:3528–3547. doi:10.3390/en6073528

  27. 27.

    Recioui A (2013) Application of hybrid Taguchi-genetic algorithm to the multiobjective design optimization of Yagi-Uda Atennas. Wirel Pers Commun 2:1403–1420. doi:10.1007/s11277-012-0882-1

  28. 28.

    Recioui A, Bentarzi H (2013) Capacity optimization of MIMO wireless communications systems using a hybrid genetic-Taguchi algorithm. Wirel Pers Commun 2:1003–1019. doi:10.1007/s11277-012-0857-2

  29. 29.

    Chao-Lieh Y, Kun-Tzu Y (2013) Multi-objective optimization of glass fiber cutting process by applying the fuzzy-based Taguchi method. Int J Reliab Qual Saf Eng 2:1–17. doi:10.1142/S0218539313500083

  30. 30.

    Canessa E, Bielenberg G, Allende H (2014) Robust design in multiobjective systems using Taguchi’s parameter design approach and a Pareto genetic algorithm. Revista Facultad de Ingeniería Universidad de Antioquia 72:73–86

Download references

Author information

Correspondence to Jorge Limon-Romero.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Limon-Romero, J., Tlapa, D., Baez-Lopez, Y. et al. Application of the Taguchi method to improve a medical device cutting process. Int J Adv Manuf Technol 87, 3569–3577 (2016). https://doi.org/10.1007/s00170-016-8623-3

Download citation

Keywords

  • Taguchi method
  • Cutting process
  • Medical device
  • Capability improvement