Improved seizure resistance of ultra-high-strength steel ironed cups with a lubricant containing SiO2 nanoparticles

ORIGINAL ARTICLE
  • 110 Downloads

Abstract

Good boundary lubrication is necessary during cold stamping of high-strength steel sheets to prevent die wear and seizure of the parts owing to the high contact pressure. This study is aimed to improve the seizure resistance in a 1-step combined process of deep drawing and ironing of ultra-high-strength steel cylindrical cups using a commercial lubricant containing SiO2 nanoparticles with an uncoated die. In this study, the extreme pressure performance of the lubricant containing 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 wt% of SiO2 was first evaluated using a deep drawing process under increased blank holding forces. The optimum concentration of SiO2 was determined, i.e. 2 wt%, based on successful drawing of cups having smooth surfaces under the highest holding force. Then, the ironing limits of the cups for the lubricants containing 0 and 2 wt% of SiO2 respectively were investigated with the 1-step combined process under increased ironing ratios. The experimental results showed that seizure was observed for the lubricant containing no nanoparticles at an ironing ratio of −16.7 %. However, no seizures were observed for ironing ratios up to 4.2 % using the lubricant containing 2 wt% of SiO2. The resistance to seizure of the cup was significantly increased, leading to the formation of cylindrical cups having smooth surfaces and uniform side wall thickness.

Keywords

Ironing Seizure Nanoparticles Tribology Ultra-high-strength steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vižintin J (2004) Oil surface: additive reaction mechanisms. In: Totten GE, Liang H (eds) Surface modification and mechanisms. Marcel Dekker, New York, pp 243–298Google Scholar
  2. 2.
    Martin JM, Grossiord C, Le-Mogne T, Igarashi J (2000) Transfer films and friction under boundary lubrication. Wear 245(1–2):107–115. doi:10.1016/S0043-1648(00)00471-3 CrossRefGoogle Scholar
  3. 3.
    Willermet PA, Dailey DP, Carter RO, Schmitz PJ, Zhu W (1995) Mechanism of formation of antiwear films from Zinc Dialkyldithiophosphates. Tribol Int 28(3):177–187. doi:10.1016/0301-679X(95)98965-G CrossRefGoogle Scholar
  4. 4.
    De Barros MI, Bouchet J, Raoult I, Le-Mogne T, Martin JM, Kasrai M, Yamada Y (2003) Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254(9):863–870. doi:10.1016/S0043-1648(03)00237-0 CrossRefGoogle Scholar
  5. 5.
    Wagner S, Kleinert H, Zimmermann R (2002) Dry film lubricants for sheet metal forming. In: Proceedings of international conference of new developments in sheet forming. University of Stuttgart, Germany, pp 451–472Google Scholar
  6. 6.
    Kim H, Sung JH, Sivakumar R, Altan T (2007) Evaluation of stamping lubricants using the deep drawing test. Int J Mach Tools Manuf 47(14):2120–2132. doi:10.1016/j.ijmachtools.2007.04.014 CrossRefGoogle Scholar
  7. 7.
    Kim H, Altan T, Yan Q (2009) Evaluation of stamping lubricants in forming advanced high strength steels (AHSS) using deep drawing and ironing tests. J Mater Process Technol 209(8):4122–4133. doi:10.1016/j.jmatprotec.2008.10.007 CrossRefGoogle Scholar
  8. 8.
    Abe Y, Ohmi T, Mori K, Masuda T (2014) Improvement of formability in deep drawing of ultra-high strength steel sheets by coating of die. J Mater Process Technol 214(9):1838–1843. doi:10.1016/j.jmatprotec.2014.03.023 CrossRefGoogle Scholar
  9. 9.
    Hou Y, Zhang W, Yu Z, Li S (2009) Selection of tool materials and surface treatments for improved galling performance in sheet metal forming. Int J Adv Manuf Technol 43(9):1010–1017. doi:10.1007/s00170-008-1780-2 CrossRefGoogle Scholar
  10. 10.
    Tan CJ, Chong WT, Hassan MA (2013) End formation of a round tube into a square section having small corner radii. J Mater Process Technol 213(9):1465–1474. doi:10.1016/j.jmatprotec.2013.03.021 CrossRefGoogle Scholar
  11. 11.
    Tan CJ, Purbolaksono J, Chong WT (2015) Forming box-shaped ends in circular tubes. Int J Precis Eng Manuf 16(9):1975–1981. doi:10.1007/s12541-015-0257-0 CrossRefGoogle Scholar
  12. 12.
    Sarhan AAD, Sayuti M, Hamdi M (2012) Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system. Int J Adv Manuf Technol 63(5–8):505–512. doi:10.1007/s00170-012-3940-7 CrossRefGoogle Scholar
  13. 13.
    Sia SY, Bassyony EZ, Sarhan AAD (2014) Development of SiO2 nanolubrication system to be used in sliding bearings. Int J Adv Manuf Technol 71(5):1277–1284. doi:10.1007/s00170-013-5566-9 CrossRefGoogle Scholar
  14. 14.
    Ito K, Adachi K, Kato K (2006) Friction of Si3N4 ball / Si3N4 disk sliding in water with SiO2 nano-particles. Tribol Online 1(2):34–39. doi:10.2474/trol.1.34 CrossRefGoogle Scholar
  15. 15.
    Jiao D, Zheng S, Wang Y, Guan R, Cao B (2011) The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci 257(13):5720–5725. doi:10.1016/j.apsusc.2011.01.084 CrossRefGoogle Scholar
  16. 16.
    Kobayashi K, Hironaka S, Suzue M, Ohta Y (2004) Lubricities of SiO2 particles coated with carbon. J Ceram Soc Jpn 112(4):210–213, in JapaneseCrossRefGoogle Scholar
  17. 17.
    Hosoe H, Hiratsuka K, Minami I, Hironaka S (1997) Lubricities of super fine SiO2 particle as a solid lubricant. J Ceram Soc Jpn 105(10):867–870, in JapaneseCrossRefGoogle Scholar
  18. 18.
    Yanagihara K, Tani Y, Murakami Y (2003) Proposal of new solid lubrication technology employing nm silica particles. Trans Jpn Soc Mech Eng C69(688):3384–3389, in JapaneseCrossRefGoogle Scholar
  19. 19.
    Tirosh J, Iddan D, Silviano M (1992) Hydrostatic ironing—analysis and experiments. J Manuf Sci Eng 114(2):237–243. doi:10.1115/1.2899777 CrossRefGoogle Scholar
  20. 20.
    Shirazi A, Abrinia K, Faraji G (2015) Hydroironing: a novel ironing method with a higher thickness reduction. Mater Manuf Process 30(1):99–103. doi:10.1080/10426914.2014.962659 CrossRefGoogle Scholar
  21. 21.
    Shirazi A, Abrinia K, Faraji G (2015) Analytical and experimental investigations on the novel hydro ironing process. Int J Adv Manuf Tech (In press) doi:10.1007/s00170-015-7535-y
  22. 22.
    Khodsetan M, Faraji G, Abrinia K (2015) A novel ironing process with extra high thickness reduction: constrained ironing. Mater Manuf Process 30(11):1324–1328. doi:10.1080/10426914.2015.1037898 CrossRefGoogle Scholar
  23. 23.
    Tan CJ, Abe Y, Daodon W, Takahashi N, Mori K, Purbolaksano J (2016) Increase in ironing limit of aluminium alloy cups with lubricants containing nanoparticles. J Mater Process Technol 229:804–813. doi:10.1016/j.jmatprotec.2015.10.032 CrossRefGoogle Scholar
  24. 24.
    Zhuang X, Sun X, Xiang H, Xia M, Zhao Z (2015) Compound deep drawing and extrusion process for the manufacture of geared drum. Int J Adv Manuf Tech (In press) doi:10.1007/s00170-015-7840-5

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Centre of Advanced Manufacturing and Material Processing (AMMP Centre), Level 8, Engineering Tower, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Mechanical EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations