Advertisement

Machine grinding as an alternative method for creating functional surfaces for controlling cell behaviour

  • Michael Irving
  • Mark F. MurphyEmail author
  • Mike N. Morgan
  • Francis Lilley
  • Paul French
  • David R. Burton
  • Peter Moran
Open Access
ORIGINAL ARTICLE

Abstract

There is extensive evidence to show that certain cellular behaviours including cell proliferation, migration and adhesion can be controlled by culturing cells on surfaces containing different micro-metre- and nanometre-scale features. This paper will introduce the use of machine grinding to generate surfaces with micro-sized features and their ability to affect cell behaviour. Results are presented which show that polyurethane castings of the ground surfaces can promote cell adhesion and migration. This study demonstrates the usefulness of surface grinding as a cost-effective method for generating functional surfaces for modifying cell behaviour.

Keywords

Grinding Micro-topography Fibroblast cells Cell adhesion Cell migration 

References

  1. 1.
    Biela SA, Su Y, Spatz JP et al (2009) Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range. Acta Biomater 5:2460–2466CrossRefGoogle Scholar
  2. 2.
    Biggs MJP, Richards RG, Gadegaard N et al (2007) Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J Orthop Res 25:273–282CrossRefGoogle Scholar
  3. 3.
    Clark P, Connolly P, Curtis AS et al (1987) Topographical control of cell behaviour. I Simple step cues. Development 99:439–448Google Scholar
  4. 4.
    Couchman JR, Hook M, Rees DA et al (1983) Adhesion, growth, and matrix production by fibroblasts on laminin substrates. J Cell Biol 96:177–183CrossRefGoogle Scholar
  5. 5.
    Curtis ASG, Casey B, Gallagher JO et al (2001) Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 94:275–283CrossRefGoogle Scholar
  6. 6.
    D’arcangelo E, Mcguigan AP (2015) Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques 58:13–23Google Scholar
  7. 7.
    Dalby MJ, Mccloy D, Robertson M et al (2006) Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials 27:2980–2987CrossRefGoogle Scholar
  8. 8.
    Dalby MJ, Riehle MO, Sutherland DS et al (2005) Morphological and microarray analysis of human fibroblasts cultured on nanocolumns produced by colloidal lithography. Eur Cell Mater 9:1–8, discussion 8 Google Scholar
  9. 9.
    Dalby MJ, Riehle MO, Yarwood SJ et al (2003) Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res 284:274–282CrossRefGoogle Scholar
  10. 10.
    Duncan AC, Rouais F, Lazare S et al (2007) Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloid Surf B 54:150–159CrossRefGoogle Scholar
  11. 11.
    Frey MT, Tsai IY, Russell TP et al (2006) Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J 90:3774–3782CrossRefGoogle Scholar
  12. 12.
    Gomez-Florit M, Xing R, Ramis JM et al (2014) Human gingival fibroblasts function is stimulated on machined hydrided titanium zirconium dental implants. J Dent 42:30–38CrossRefGoogle Scholar
  13. 13.
    Gray C, Boyde A, Jones SJ (1996) Topographically induced bone formation in vitro: implications for bone implants and bone grafts. Bone 18:115–123CrossRefGoogle Scholar
  14. 14.
    Grossner-Schreiber B, Herzog M, Hedderich J et al (2006) Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study. Clin Oral Implants Res 17:736–745CrossRefGoogle Scholar
  15. 15.
    Hamilton DW, Oakley C, Jaeger NA et al (2009) Directional change produced by perpendicularly-oriented microgrooves is microtubule-dependent for fibroblasts and epithelium. Cell Motil Cytoskeleton 66:260–271CrossRefGoogle Scholar
  16. 16.
    Harriott LR (2001) Limits of lithography. Proc IEEE 89:366–374CrossRefGoogle Scholar
  17. 17.
    Kolind K, Dolatshahi-Pirouz A, Lovmand J et al (2010) A combinatorial screening of human fibroblast responses on micro-structured surfaces. Biomaterials 31:9182–9191CrossRefGoogle Scholar
  18. 18.
    Le Guehennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefGoogle Scholar
  19. 19.
    Leclerc A, Tremblay D, Hadjiantoniou S et al (2013) Three dimensional spatial separation of cells in response to microtopography. Biomaterials 34:8097–8104CrossRefGoogle Scholar
  20. 20.
    Matsuzaka K, Yoshinari M, Shimono M et al (2004) Effects of multigrooved surfaces on osteoblast-like cells in vitro: scanning electron microscopic observation and mRNA expression of osteopontin and osteocalcin. J Biomed Mater Res A 68:227–234CrossRefGoogle Scholar
  21. 21.
    Mustafa K, Silva Lopez B, Hultenby K et al (1998) Attachment and proliferation of human oral fibroblasts to titanium surfaces blasted with TiO2 particles. A scanning electron microscopic and histomorphometric analysis. Clin Oral Implants Res 9:195–207CrossRefGoogle Scholar
  22. 22.
    Shen X, Ma P, Hu Y et al (2015) Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates. Colloids Surf B Biointerfaces 127:221–232CrossRefGoogle Scholar
  23. 23.
    Voisin M, Ball M, O’connell C et al (2010) Osteoblasts response to microstructured and nanostructured polyimide film, processed by the use of silica bead microlenses. Nanomed-Nanotechnol 6:35–43CrossRefGoogle Scholar
  24. 24.
    Walboomers XF, Ginsel LA, Jansen JA (2000) Early spreading events of fibroblasts on microgrooved substrates. J Biomed Mater Res 51:529–534CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Michael Irving
    • 1
  • Mark F. Murphy
    • 1
    Email author
  • Mike N. Morgan
    • 1
  • Francis Lilley
    • 1
  • Paul French
    • 1
  • David R. Burton
    • 1
  • Peter Moran
    • 1
  1. 1.General Engineering Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations