A similarity-based reuse system for injection mold design in automotive interior industry

  • Zhi Li
  • Xionghui ZhouEmail author
  • Wei Liu
  • Qiang Niu
  • Chuipin Kong


Injection mold design of automotive interior is knowledge-intensive and time-consuming; therefore, it is important to reuse previous design instead of designing from scratch. This work proposed a systematic similarity-based approach to reuse design resources. With transformation of native CAD format to STEP for global and partial retrieval, the process of reuse constitutes five steps: (i) initial retrieval for candidates parts, (ii) precise retrieval for similar case based on typical surface retrieval, (iii) adaptation of similar case such as mold base, (iv) reuse-forming mechanism based on partial retrieval of detailed feature similarity, and (v) instance detection and automatic locating of forming mechanism based on partial similarity. While hierarchical representation of CAD models proposed in our previous work serves as the kernel of retrieval, parametric assembly modeling and visual based automation testing are integrated in the reuse process of mold base in step (iii). A case study of the proposed reuse approach is provided, and feedback from automotive interior industry validated its feasibility.


Mold design Design reuse CAD model retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novotni M, Klein R A geometric approach to 3D object comparison. In: Shape Modeling and Applications, SMI 2001 International Conference on., 2001. pp 167–175Google Scholar
  2. 2.
    Sánchez-Cruz H, Bribiesca E (2003) A method of optimum transformation of 3D objects used as a measure of shape dissimilarity. Image Vis Comput 21(12):1027–1036CrossRefGoogle Scholar
  3. 3.
    Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph (TOG) 21(4):807–832MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ankerst BM, Kastenmüller G, Kriegel HP, Seidl T (1999) 3D shape histograms for similarity search and classification in spatial databases. In: Advances in Spatial Databases, pp 207–226Google Scholar
  5. 5.
    Kazhdan M, Funkhouser T (2002) Harmonic 3D shape matching. In: ACM SIGGRAPH 2002 conference abstracts and applications, pp 191–191Google Scholar
  6. 6.
    Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Symposium on geometry processingGoogle Scholar
  7. 7.
    Zaharia T, Preteux FJ (2001) 3D-shape-based retrieval within the MPEG-7 framework. In: Photonics West 2001-Electronic Imaging, pp 133–145Google Scholar
  8. 8.
    Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. In: Shape Modeling International, 2003. pp 130–139Google Scholar
  9. 9.
    Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp 203–212Google Scholar
  10. 10.
    Cyr CM, Kimia BB (2001) 3D object recognition using shape similarity-based aspect graph. In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, pp 254–261Google Scholar
  11. 11.
    Chen D-Y, Tian X-P, Shen Y-T Ouhyoung M (2003) On visual similarity based 3D model retrieval. In: Computer graphics forum, pp 223–232Google Scholar
  12. 12.
    Tangelder JW, Veltkamp RC (2003) Polyhedral model retrieval using weighted point sets. Int J Image Graph 3(01):209–229CrossRefGoogle Scholar
  13. 13.
    Ip CY, Lapadat D, Sieger L, Regli WC (2002) Using shape distributions to compare solid models. In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, pp 273–280Google Scholar
  14. 14.
    You C-F, Tsai Y-L (2010) 3D solid model retrieval for engineering reuse based on local feature correspondence. Int J Adv Manuf Technol 46(5–8):649–661CrossRefGoogle Scholar
  15. 15.
    Tao S, Huang Z, Zuo B, Peng Y, Kang W (2012) Partial retrieval of CAD models based on the gradient flows in Lie group. Pattern Recogn 45(4):1721–1738CrossRefzbMATHGoogle Scholar
  16. 16.
    El-Mehalawi M, Allen Miller R (2003) A database system of mechanical components based on geometric and topological similarity. Part ii: indexing, retrieval, matching, and similarity assessment. Comput Aided Des 35(1):95–105CrossRefGoogle Scholar
  17. 17.
    Gao W, Gao S, Liu Y, Bai J, Hu B (2006) Multiresolutional similarity assessment and retrieval of solid models based on DBMS. Comput Aided Des 38(9):985–1001CrossRefGoogle Scholar
  18. 18.
    Bespalov D, Regli WC, Shokoufandeh A (2003) Reeb graph based shape retrieval for CAD. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 229–238Google Scholar
  19. 19.
    Cheng HC, Chu CH, Wang E, Kim YS (2007) 3D part similarity comparison based on levels of detail in negative feature decomposition using artificial neural network. Computer-Aided Design \& Applications 4:5Google Scholar
  20. 20.
    Li M, Zhang Y, Fuh J, Qiu Z (2009) Toward effective mechanical design reuse: CAD model retrieval based on general and partial shapes. J Mech Des 131:124501CrossRefGoogle Scholar
  21. 21.
    Bai J, Gao S, Tang W, Liu Y, Guo S (2010) Design reuse oriented partial retrieval of CAD models. Comput Aided Des 42(12):1069–1084CrossRefGoogle Scholar
  22. 22.
    Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59Google Scholar
  23. 23.
    Chu CH, Hsu YC (2006) Similarity assessment of 3D mechanical components for design reuse. Robot Comput Integr Manuf 22(4):332–341CrossRefGoogle Scholar
  24. 24.
    Hong T, Lee K, Kim S (2006) Similarity comparison of mechanical parts to reuse existing designs. Comput Aided Des 38(9):973–984CrossRefGoogle Scholar
  25. 25.
    Deshmukh AS, Banerjee AG, Gupta SK, Sriram RD (2008) Content-based assembly search: a step towards assembly reuse. Comput Aided Des 40(2):244–261CrossRefGoogle Scholar
  26. 26.
    Chen X, Gao S, Guo S, Bai J (2012) A flexible assembly retrieval approach for model reuse. Comput Aided Des 44(6):554–574CrossRefGoogle Scholar
  27. 27.
    Bai J, Gao S, Tang W, Liu Y, Guo S (2009) Semantic-based partial retrieval of CAD models for design reuse. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp 271–276Google Scholar
  28. 28.
    Jayanti S, Kalyanaraman Y, Iyer N, Ramani K (2006) Developing an engineering shape benchmark for CAD models. Comput Aided Des 38(9):939–953CrossRefGoogle Scholar
  29. 29.
    Yeh T, Chang T-H, Miller RC (2009) Sikuli: using GUI screenshots for search and automation. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology, pp 183–192Google Scholar
  30. 30.
    PythonOCC. (2014).
  31. 31.
  32. 32.
    Traceparts. (2014).
  33. 33.
  34. 34.
    Li Z, Zhou X, Liu W (2015) A geometric reasoning approach to hierarchical representation for B-Rep model retrieval. Comput Aided Des 62:190–202CrossRefGoogle Scholar
  35. 35.
    Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub) graph isomorphism algorithm for matching large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372CrossRefGoogle Scholar
  36. 36.
    Ip CY (2005) Automatic classification of cad models. Drexel University.
  37. 37.
    Liu ZB, Bu SH, Zhou K, Gao SM, Han JW, Wu J (2013) A survey on partial retrieval of 3D shapes. Journal of Computer Science and Technology. vol 28 Springer, pp 836–851Google Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Zhi Li
    • 1
  • Xionghui Zhou
    • 1
    Email author
  • Wei Liu
    • 1
  • Qiang Niu
    • 1
  • Chuipin Kong
    • 1
  1. 1.National Engineering Research Center of Die and Mold CADShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations