Advertisement

Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy

  • Zhengwei Li
  • Shude Ji
  • Yinan Ma
  • Peng Chai
  • Yumei Yue
  • Shuangsheng Gao
ORIGINAL ARTICLE

Abstract

Refill friction stir spot welding (RFSSW) was applied to weld 2024-T4 aluminum alloy and effects of welding parameters on the fracture mechanisms of RFSSW tensile-shear specimens were investigated. Fracture modes are mainly determined by the bonding strengths of the lap interface and the stir zone (SZ)/thermomechanically affected zone (TMAZ) interface, which are largely influenced by heat input and sleeve plunge depth. Reasonable heat input leads to shear-plug fracture mode, which owns better mechanical properties in general. When sleeve does not penetrate into the lower plate, hook is flat and bonding ligament is continuous, shear fracture mode happens. Increased heat input improves diffusion bonding effect of the SZ/TMAZ interface but decreases hardness in SZ, which also results into shear fracture mode. Big sleeve plunge depth and downward bending hook lead to plug fracture mode. Fracture positions and fracture morphologies agree with the corresponding fracture mechanisms.

Keywords

Refill friction stir spot welding Fracture mechanism 2024-T4 aluminum alloy Hardness Fracture morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Song X, Ke LM, Xing L, Liu FC, Huang CP (2014) Effect of plunge speeds on hook geometries and mechanical properties in friction stir spot welding of A6061-T6 sheets. Int J Adv Manuf Technol 71:2003–2010CrossRefGoogle Scholar
  2. 2.
    Karthikeyan R, Balasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int J Adv Manuf Technol 51:173–183CrossRefGoogle Scholar
  3. 3.
    Mazzaferro JAE, Rosendo TS, Mazzaferro CCP, Ramos FD, Tier MAD, Strohaecker TR, dos Santos JF (2009) Preliminary study on the mechanical behavior of friction spot welds. Soldagem Insp 14(3):238–247CrossRefGoogle Scholar
  4. 4.
    Shen ZK, Yang XQ, Zhang ZH, Cui L, Li TL (2012) Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Mater Des 44:476–486CrossRefGoogle Scholar
  5. 5.
    Pan T, Santella M, Blundell N (2009) Friction stir spot welding for structural aluminum sheets. SAE Int J Mater Manf 2(1):23–29. doi: 10.4271/2009-01-0023 CrossRefGoogle Scholar
  6. 6.
    Iwashita T (2003) Method and apparatus for joining. US Patent 6601751:B2Google Scholar
  7. 7.
    Yang XW, Fu T, Li WY et al. (2014) Friction stir spot welding: A review on joint macro and microstructure, property, and process modelling. Adv Mater Sci Eng 697170. doi: http://dx.doi.org/ 10.1155/2014/697170
  8. 8.
    Pieta G, dos Santos JF, Strohaecker TR, Clarke T (2014) Optimization of friction spot welding process parameters for AA2198-T8 sheets. Mater Manuf Process 29(8):934–940. doi: 10.1080/10426914.2013.811727 CrossRefGoogle Scholar
  9. 9.
    Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S (2008) Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al-Mg-Si alloy. Int J Fatigue 30:1956–1966CrossRefGoogle Scholar
  10. 10.
    Han B, Huang YX, Lv SL, Wan L, Feng JC, Fu GS (2013) AA7075 bit for repairing AA2219 keyhole by filling friction stir welding. Mater Des 51:25–33CrossRefGoogle Scholar
  11. 11.
    Tier MAD, dos Santos JF, Rosendo T et al. (2008) The influence of weld microstructure on mechanical properties of alcald AA2024-T3 friction spot welded. SAE technical paper 2008-01-2287Google Scholar
  12. 12.
    Patnaik A, Koch K, Arbegast W et al. (2006) Static properties of “refill” friction spot welded skin stiffened compression panels. SAE technical paper 2006-01-0967Google Scholar
  13. 13.
    Suhuddin U, Fischer V, Kroeff F, dos Santos JF (2014) Microstructure and mechanical properties of friction spot welds of dissimilar AA5754 Al and AZ31 Mg alloys. Mater Sci Eng A 590:384–389CrossRefGoogle Scholar
  14. 14.
    Oliveira PHF, Amancio-Filho ST, dos Santos JF, Hage JE (2010) Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett 64:2098–2101CrossRefGoogle Scholar
  15. 15.
    da Silva AAM, dos Santos JF, Rosendo TR et al. (2007) Performance evaluation of 2-mm thick alclad AA2024 T3 aluminum alloy friction spot welding. SAE technical paper 2007-01-3812Google Scholar
  16. 16.
    Suhuddin UFH, Fischer V, dos Santos JF (2013) The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy. Scripta Mater 68:87–90CrossRefGoogle Scholar
  17. 17.
    Kakarla SST, Muci-Küchler KH, Arbegast WJ, Allen CD (2005) Three-dimensional finite element model of the refill friction stir spot welding process. In: Jata KV, Mahoney MW, Mishra RS, Lienert TJ (eds) Friction stir welding and processing III. The Minerals, Metals and Materials Society, Warrendale, pp 213–220Google Scholar
  18. 18.
    Zhao YQ, Liu HJ, Chen SX, Lin Z, Hou JC (2014) Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Mater Des 62:40–46CrossRefGoogle Scholar
  19. 19.
    Shen ZK, Yang XQ, Yang S, Zhang ZH, Yin YH (2014) Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy. Mater Des 54:766–778CrossRefGoogle Scholar
  20. 20.
    Rosendo T, Parra B, Tier MD, da Silva AM, dos Santos JF, Strohaecker TR, Alcantara NG (2011) Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminum alloy. Mater Des 32:1094–1100CrossRefGoogle Scholar
  21. 21.
    Tier MAD, Rosendo TS, dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaeckerd TR (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminum welds. J Mater Process Technol 213:997–1005CrossRefGoogle Scholar
  22. 22.
    Jafarian M, Khodabandeh A, Manafi S (2015) Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer. Mater Des 65:160–164CrossRefGoogle Scholar
  23. 23.
    Siddiquee AN, Pandey S (2014) Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. Int J Adv Manuf Technol 73:473–486CrossRefGoogle Scholar
  24. 24.
    Jonckheere C, de Meester B, Cassiers C, Delhaye M, Simar A (2012) Fracture and mechanical properties of friction stir spot welds in 6063-T6 aluminum alloy. Int J Adv Manuf Technol 62:569–575CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Zhengwei Li
    • 1
  • Shude Ji
    • 1
  • Yinan Ma
    • 1
  • Peng Chai
    • 2
  • Yumei Yue
    • 1
  • Shuangsheng Gao
    • 1
  1. 1.Faculty of Aerospace EngineeringShenyang Aerospace UniversityShenyangPeople’s Republic of China
  2. 2.School of Mechanical Engineering and AutomationBeijing University of Aeronautics and AstronauticsBeijingPeople’s Republic of China

Personalised recommendations