Advertisement

A novel ultrasonic-assisted dressing method of electroplated grinding wheels via stationary diamond dresser

  • Heike KitzigEmail author
  • Taghi Tawakoli
  • Bahman Azarhoushang
ORIGINAL ARTICLE

Abstract

To achieve fine surface roughness, tungsten carbides are mostly ground with resin or vitrified bonded diamond wheels. The use of cost-effective electroplated diamond tools (single layer) is, despite some specific improvements, such as geometrical flexibility, excellent profile holding, large chip spaces and good cooling characteristics, which allows even dry grinding processes, unusual when fine surface roughness is desired. It is generally due to the high grain protrusion (approx. 40 % compared to approx. 15 % with resin bonded or vitrified diamond wheels) which leads to the induced grooves on the ground surface combined with high surface roughness. Another disadvantage of single-layer bonded grinding wheels is their low range of dress ability. This article describes a possibility to overcome the drawbacks of the electroplated diamond wheels by ultrasonic-assisted fracturing of the diamond grains. For this purpose, an ultrasonic-assisted stationary dresser is used. The ultrasonic unit generates hits on the diamond grains. The grinding wheel rotates with a very slow circumferential speed, which is uncommon in conventional dressing methods, so that the grains are fractured by the oscillating movement of the dresser. However, numerous sharp cutting edges are generated due to the generated hits. This method allows the generation of cutting edges on relatively course grain sizes (in this case, D251) that have the properties of smaller grain sizes, and therefore, surfaces with lower roughness values are produced while the advantages of the electroplated grinding wheels, such as good profile keeping and good cooling characteristic, are maintained. Additionally, the service life of the electroplated wheel can be increased and the grinding parameters can be kept nearly constant. Experimental analyses have shown that the grinding of tungsten carbide with fractured electroplated D251 diamonds enables fine surface roughness from Ra < 0.1 μm and Rz < 0.8 μm.

Keywords

Dressing Ultrasonic-assisted dressing Electroplated diamond grinding wheel Grinding Tungsten carbide Fracturing of diamonds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Würz E (2011) Schleifbearbeitung von Keramik-Hartmetall-Verbunden. Techn. Univ., Diss.--Dortmund, 2011. Schriftenreihe des ISF, vol 62. Vulkan-Verl, EssenGoogle Scholar
  2. 2.
    Liu K, Li XP, Rahman M et al (2003) CBN tool wear in ductile cutting of tungsten carbide: milling. Wear 255(7–12):1344–1351. doi: 10.1016/S0043-1648(03)00061-9 CrossRefGoogle Scholar
  3. 3.
    Bargel HJ, Schulze G (2012) Werkstoffkunde, 11., bearb. Aufl. 2012. Springer-Lehrbuch. Springer, BerlinGoogle Scholar
  4. 4.
    Yang J, Odén M, Johansson-Jõesaar MP et al (2014) Grinding effects on surface integrity and mechanical strength of WC-Co cemented carbides. Procedia CIRP 13:257–263. doi: 10.1016/j.procir.2014.04.044 CrossRefGoogle Scholar
  5. 5.
    Marinescu ID, Hitchiner M, Uhlmann E et al (2007) Handbook of machining with grinding wheels. Manufacturing engineering and materials processing, vol 72. CRC/Taylor & Francis, LLC, Boca RatonGoogle Scholar
  6. 6.
    Friemuth T (2002) Herstellung spanender Werkzeuge, Als Ms. gedr. Fortschritt-Berichte // VDI Reihe 2, Fertigungstechnik, vol 615. VDI-Verl., DüsseldorfGoogle Scholar
  7. 7.
    Maldaner J Verbesserung des Zerspanverhaltens von Werkzeugen mit Hartmetall-Schneidelementen durch Variation der SchleifbearbeitungGoogle Scholar
  8. 8.
    Schneider M (1999) Auswirkungen thermomechanischer Vorgänge beim Werkzeugschleifen. Schriftenreihe des ISF / Universität Dortmund, Institut für Spanende Fertigung, vol 9. Vulkan-Verl., EssenGoogle Scholar
  9. 9.
    Burkhard G, Zigerlig B, Boretius M (2002) Spanen mit definiert angeordneten. Diamant- Oder cBN-Körnern 2002(36):116–120Google Scholar
  10. 10.
    Ghosh A, Chattopadhyay AK (2007) Experimental investigation on performance of touch-dressed single-layer brazed cBN wheels. Int J Mach Tools Manuf 47(7–8):1206–1213. doi: 10.1016/j.ijmachtools.2006.08.020 CrossRefGoogle Scholar
  11. 11.
    Aurich JC, Kirsch B (2014) Energieeffizienz beim Schleifen: Eine Betrachtung über Produktion und Produkteinsatz. In: 3rd International Chemnitz Manufacturing Colloquium ICMCGoogle Scholar
  12. 12.
    Warnecke G (1994) Schleifen von Hochleistungskeramik. In:Google Scholar
  13. 13.
    Brevern Pv (1996) Untersuchungen zum Tiefschleifen von Hartmetall unter besonderer Berücksichtigung von Schleiföl als Kühlschmierstoff, Als Ms. gedr. Fortschritt-Berichte VDI Reihe 2, Fertigungstechnik, vol 401. VDI-Verl., DüsseldorfGoogle Scholar
  14. 14.
    Klocke F (2005) Schleifen. In: Klocke F, König W (eds) Fertigungsverfahren 2. Springer, Berlin/Heidelberg, pp 155–342Google Scholar
  15. 15.
    Hessel D (2003) Punktcrushieren keramisch gebundener DiamantschleifscheibenGoogle Scholar
  16. 16.
    Azarhoushang B (2014) Das Abrichten als ein integraler Bestandteil des Schleifprozesses, Teil 1: Mechanische Abrichtprozesse. Diamond Business (02): 64–71Google Scholar
  17. 17.
    Marinescu ID, Tönshoff HK, Inasaki I (2000) Handbook of ceramic grinding and polishing. Materials science and process technology series. Ceramic and other materials—processing and technology. Noyes; William Andrew, Park Ridge; NorwichGoogle Scholar
  18. 18.
    Rabiey M, Dold C, Transchel R et al (2011) Influence of picosecond laser touch dressing of electroplated diamond wheels on the dressing of SiC vitrified bond wheel. AMR 325:189–194. doi: 10.4028/www.scientific.net/AMR.325.189 CrossRefGoogle Scholar
  19. 19.
    Wegener K, Hoffmeister HW, Karpuschewski B et al (2011) Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol 60(2):757–777. doi: 10.1016/j.cirp.2011.05.003 CrossRefGoogle Scholar
  20. 20.
    Ikuse Y, Nonokawa T, Kawabata N et al (1996) Development of new ultrasonic dressing equipment. Int J Japan Soc Precis Eng 30(3):217–222Google Scholar
  21. 21.
    Nomura M, Wu YB, Kato M et al (2005) Effects of ultrasonic vibration in truing and dressing of CBN grinding wheel used for internal grinding of small holes. KEM 291–292:183–188. doi: 10.4028/www.scientific.net/KEM.291-292.183 CrossRefGoogle Scholar
  22. 22.
    Nomura M, Wu Y, Kuriyagawa T (2007) Investigation of internal ultrasonically assisted grinding of small holes: effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel. J Mech Sci Technol 21(10):1605–1611. doi: 10.1007/BF03177382 CrossRefGoogle Scholar
  23. 23.
    Tawakoli T, Westkaemper E, Rasifard A (2007) Ultrasonic assisted dressing of vitrified CBN grinding wheel. Proc. 40th CIRP International Manufacturing Systems Seminar 2007, Liverpool, UKGoogle Scholar
  24. 24.
    Tawakoli T, Rasifard A, Azarhoushang B (2008) Dressing of CBN grinding wheels with ultrasonic assistance. IJMMS 1(4):321. doi: 10.1504/IJMMS.2008.023222 CrossRefGoogle Scholar
  25. 25.
    Tawakoli T, Rasifard A, Azarhoushang B (2009) Vorteilhafter Einsatz der Ultraschallunterstützung beim Abrichten und Schleifen. dihw 2009(III)Google Scholar
  26. 26.
    Rasifard A (2011) Ultraschallunterstütztes Abrichten von keramisch gebundenen CBN-Schleifscheiben mit Formrollen. Berichte aus der Fertigungstechnik. Shaker, AachenGoogle Scholar
  27. 27.
    Gao G, Zhao B, Li Y et al (2011) Research on CBN grinding wheel dressing with ultrasonic vibration assistance and its grinding performance. SSP 175:126–130. doi: 10.4028/www.scientific.net/SSP.175.126 CrossRefGoogle Scholar
  28. 28.
    Sroka F (2005) Konditionieren von Diamantschleifscheiben. Techn. Univ., Diss.--Berlin, 2005Google Scholar
  29. 29.
    Abdullah A, Pak A, Farahi M et al. (2007) Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide. J Mater Process Technol 183(2–3):165–168. doi: 10.1016/j.jmatprotec.2006.09.038
  30. 30.
    Biermann D, Würz E (2009) Schleifbearbeitung von Keramik und Hartmetall mit Diamantschleifscheiben. dihw Diamant Hochleistungswerkzeuge (2): 44–52Google Scholar
  31. 31.
    Denkena B, Friemuth T, Breidenstein B et al. (2004) Einfluss der Prozessauslegung zur Herstellung von Hartmetallwerkeugen auf den Eingenspannungszustand der Randzone. In: Hoffmeister HW, Tönshoff HK (eds) Jahrbuch Schleifen, Honen, Läppen und Polieren.: Verfahren und Maschinen. Vulkan VerlagGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Heike Kitzig
    • 1
    Email author
  • Taghi Tawakoli
    • 1
  • Bahman Azarhoushang
    • 1
  1. 1.Institute of Grinding and Precision Technology (KSF)Hochschule Furtwangen UniversityFurtwangen im SchwarzwaldGermany

Personalised recommendations