Advertisement

Numerical simulations and experimental results of tensile behaviour of hybrid composite shape memory alloy wires embedded structures

  • A. Lebied
  • B. Necib
  • M. L. Sahli
  • J-C. Gelin
  • T. Barrière
ORIGINAL ARTICLE

Abstract

The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with Ti-Ni alloys wires were fabricated, and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded SMA wires are presented. The paper illustrates influence of the SMA wires upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

Keywords

Smart material Shape memory alloys Composites Mechanicals properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleay TSM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT (2001) A smart repair system for polymer matrix composites. Compos Part A 32:1767–1776CrossRefGoogle Scholar
  2. 2.
    Yang Y, Chen Y, Wei Y, Li Y (2015) 3D printing of shape memory polymer for functional part fabrication. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-7843-2
  3. 3.
    Schrooten J, Tsoi KA, Stalmans R, Zheng YJ, Sittner P (2001) Comparison between generation of recovery stresses in shape memory wires and composites: theory and reality, in Proceedings of SPEI, Smart Materials and MEMS 4234:114–124Google Scholar
  4. 4.
    Birman V (1997) Review of mechanics of shape memory alloy structures. Appl Mech Rev 50:629–645CrossRefGoogle Scholar
  5. 5.
    Muthumani K (2002) Structural application of smart materials. Smart Mater Bull 11:10–12Google Scholar
  6. 6.
    Poon C-K, Lau K-T, Zhu L-M (2005) Design of pull-out stresses for pre-strained SMA wire/polymer hybrid composites. Compos Part B 36:25–31CrossRefGoogle Scholar
  7. 7.
    Mizuuchi K, Inoue K, Hamada K, Sugioka M, Itami M, Fukusumi M, Kawahara M (2004) Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing. Mater Sci Eng A 367:343–349CrossRefGoogle Scholar
  8. 8.
    Lei X, Rui W, Yong L (2011) The optimization of annealing and cold-drawing in the manufacture of the Ni–Ti shape memory alloy ultra-thin wire. Int J Adv Manuf Technol 55:905–910CrossRefGoogle Scholar
  9. 9.
    Ford DS, White SR (1996) Thermo-mechanical behaviour of NiTi Nitinol. Acta Mater 44:2295–2307CrossRefGoogle Scholar
  10. 10.
    Gandhi F, Wolons D (1999) Characterization of the pseudo-elastic damping behaviour of shape memory alloy wires using complex modulus. J Smart Mater Struct 8:49–56CrossRefGoogle Scholar
  11. 11.
    Kuppuswamy R, Yui A High-speed micromachining characteristics for the NiTi shape memory alloys. Int J Adv Manuf Technol doi: 10.1007/s00170-015-7598-9 (2015) 1–11Google Scholar
  12. 12.
    Otsuka K, Ren X (2005) Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50:511–678CrossRefGoogle Scholar
  13. 13.
    Shaw JA, Churchill CB, Iadicola MA (2008) Tips and tricks for characterizing shape memory alloy wire: part 1—differential scanning calorimetry and basic phenomena. Exp Technol 32:55–62CrossRefGoogle Scholar
  14. 14.
    Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ (2006) Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Scripta Mater 55:803–806CrossRefGoogle Scholar
  15. 15.
    Cong DY, Wang YD, Peng RL, Zetterstrom P, Zhao X, Liaw PK, Zuo L (2006) Crystal structures and textures in the hot forged Ni-Mn-Ga alloys. Metall Mater Trans A 37:1397–1403CrossRefGoogle Scholar
  16. 16.
    Santos TG, Fernandes FB, Bernardo G, Miranda RM (2013) Analyzing mechanical properties and non-destructive characteristics of brazed joints of NiTi shape memory alloys to carbon steel rods. Int J Adv Manuf Technol 66:787–793CrossRefGoogle Scholar
  17. 17.
    Ye HZ, Li DY, Eadie RL (2002) Improvement of wear behaviour of TiNi-based composites by hot isostatic pressing. Mater Sci Eng A 329–331:750–755CrossRefGoogle Scholar
  18. 18.
    Li DY (2003) Development of novel tribo composites with TiNi shape memory alloy matrix. Wear 255:617–628CrossRefGoogle Scholar
  19. 19.
    Sahli ML, Necib B (2014) Characterisation and modelling of behaviour of a shape memory alloys. Int J Adv Manuf Technol 70:1847–1857CrossRefGoogle Scholar
  20. 20.
    Hsu Y-F, Wang WH, Wayman CM (1999) Microstructure and martensitic transformations in a dualphase α/β Cu-Zn alloy. Metall Mater Trans 30:729–739Google Scholar
  21. 21.
    Nam TH, Hur SG, Ahn IS (1998) Phase transformation behaviours of Ti-Ni-Cu shape memory alloy powders fabricated by mechanical alloying. Met Mater Int 4:61–66CrossRefGoogle Scholar
  22. 22.
    Chawla N, Chawla KK (2006) Metal matrix composites. Springer Press, New YorkCrossRefzbMATHGoogle Scholar
  23. 23.
    Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Frick CP, Ortega AM, Tyber J, Maksound A, Maier HJ, Liu Y, Gall K (2005) Thermal processing of polycrystalline NiTi shape memory alloys. Mater Sci Eng A 405:34–49CrossRefGoogle Scholar
  25. 25.
    Shimamoto A, Zhao HY, Abe H (2004) Fatigue crack propagation and local crack-tip strain behavior in TiNi shape memory fiber reinforced composite. Int J Fatigue 26:533–542CrossRefGoogle Scholar
  26. 26.
    Vokoun D, Kafka V, Hu CT (2003) Recovery stresses generated by NiTi shape memory wires under different constraint conditions. Smart Mater Struct 12:680–685CrossRefGoogle Scholar
  27. 27.
    Wagner M, Sawaguchi T, Kausträter G, Höffken D, Eggeler G (2004) Structural fatigue of pseudoelastic NiTi shape memory wires. Mater Sci Eng A 378:105–109CrossRefGoogle Scholar
  28. 28.
    Wang ZG, Zu XT, Fu YQ, Wang LM (2005) Temperature memory effect in TiNi-based shape memory alloys. Thermochim Acta 428:199–205CrossRefGoogle Scholar
  29. 29.
    Young JM, Van Vliet KJ (2005) Prediction in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue. J Biomed Mater Res, Part B, Appl Biomater 72B:17–26CrossRefGoogle Scholar
  30. 30.
    Zheng Y, Cui L, Schrooten J (2004) Temperature memory effect of a nickel-titanium shape memory alloy. Appl Phys Lett 84:31–33CrossRefGoogle Scholar
  31. 31.
    Brinson LC, Schmidt I, Lammering R (2004) Stress induced transformation behaviour of a polycrystalline NiTi shape memory alloy: micro and macromechanical investigations via in situ optical microscopy. J Mech Phys Solids 52:1549–1572CrossRefzbMATHGoogle Scholar
  32. 32.
    Wei ZG, Sandstrom R, Miyazaki S (1998) Shape memory materials and hybrid composites for smart. J Mater Sci 33:3763–3783CrossRefGoogle Scholar
  33. 33.
    Paiva A, Savi M-A, Bragra AMB, Pacheco PMCL (2005) A constitutive model for shape memory alloys considering tensile compressive asymmetry and plasticity. Int J Solids Struct 42:3439–3457CrossRefzbMATHGoogle Scholar
  34. 34.
    Yan W, Wang C, Zhang X, Mai Y (2003) Theoretical modelling of the effect of plasticity on reverse transformation in superelastic shape memory alloys. Mater Sci Eng A 354:146–157CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Cheng Y, Grummon D (2007) Finite element modeling of indentation-induced superelastic effect using a three-dimensional constitutive model for shape memory materials with plasticity. J Appl Phys 101:1–6Google Scholar
  36. 36.
    Lee E-S, Shin TH (2011) An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing. J Mech Sci Technol 25:963–969CrossRefGoogle Scholar
  37. 37.
    Cisse C, Zaki W, Ben Zineb T (2016) Review of constitutive models and modeling techniques for shape memory alloys. Int J Plast 76:244–284CrossRefGoogle Scholar
  38. 38.
    Zak AJ, Cartmell MP, Ostachowicz WM, Wiercigroch M (2003) One-dimensional shape memory alloy models for use with reinforced composite structures. Smart Mater Struct 12:338–346CrossRefGoogle Scholar
  39. 39.
    Tsai XY, Chen LW (2002) Dynamic stability memory alloy wire reinforced composite beam. Compos Struct 56:235–241CrossRefGoogle Scholar
  40. 40.
    Fujino K, Sekine H, Abe H (1984) Analysis of an edge crack in a semi-infinite composite with a long reinforced phase. Int J Fract 25:81–94CrossRefGoogle Scholar
  41. 41.
    Furuya Y, Sasaki A, Taya M (1993) Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite. Mater Trans JIM 34:224–227CrossRefGoogle Scholar
  42. 42.
    Shimamoto A, Furuya Y, Taya M (1999) Crack close action of composite material which uses shrinkage effect of shape memory TiNi embedded fiber (effect of domain size). JSME 65:1282–1286CrossRefGoogle Scholar
  43. 43.
    Dunand DC, Mari D, Bourke MAM, Roberts JA (1996) NiTi and NiTi-TiC composites: part IV. Neutron diffraction study of twinning and shape memory recovery. Metall Mater Trans A 27:2820–2836CrossRefGoogle Scholar
  44. 44.
    Frick CP, Clark BG, Schneider AS, Steven Van Petegem RM, Van Swygenhoven H (2010) On the plasticity of small-scale nickel–titanium shape memory alloys. Scr Mater 62:492–495CrossRefGoogle Scholar
  45. 45.
    Hamada K, Lee JH, Mizuuchi K, Taya M, Inoue K (1998) Thermomechanical behavior of TiNi shape memory alloy fiber reinforced 6061 aluminum matrix composite. Metall Mater Trans A 29:1127–1135CrossRefGoogle Scholar
  46. 46.
    Murasawa G, Tohgo K, Ishii H (2004) Deformation behaviour of NiTi/polymer shape memory alloy composites—experimental verifications. J Compos Mater 38:339–416CrossRefGoogle Scholar
  47. 47.
    Yongsheng R, Shuangshuang S (2007) Large amplitude flexural vibration of the orthotropic composite plate embedded with shape memory alloy fibers. Chin J Aeronaut 20:415–424CrossRefGoogle Scholar
  48. 48.
    Zhou G, Sim G, Brewster LM, Giles PA, AR (2004) Through the thickness mechanical properties of smart quasi-isotropic carbon/epoxy laminates. Compos. Part A 35:797–815Google Scholar
  49. 49.
    Tobushi H, Hayashi S, Hoshio K, Makino Y, Miwa N (2006) Bending actuation characteristics of shape memory composite with SMA and SMP. J Intell Mater Syst Struct 17:1075–1081CrossRefGoogle Scholar
  50. 50.
    Tobushi H, Miaymoto K, Nishimura Y, Mitsui K (2011) Novel shape memory actuators. J Theor Appl Mech 49:927–943Google Scholar
  51. 51.
    Ghosh P, Rao A, Srinivasa AR (2013) Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater Des 44:164–171CrossRefGoogle Scholar
  52. 52.
    Dano M-L, Hyer MW (2003) SMA-induced snap-through of unsymmetric fiber reinforced composite laminates. Int J Solids Struct 40:5949–5972CrossRefzbMATHGoogle Scholar
  53. 53.
    Brinson LC, Lammering R (1993) Finite element analysis of the behaviour of shape memory alloys and their applications. Int J Solids Struct 30:3261–3280CrossRefzbMATHGoogle Scholar
  54. 54.
    Halbert D, Tyler et al (2015) Numerically validated reduced-order model for laminates containing shape memory alloy wire meshes, J. of Intelligent Material Systems and Structures:1045389X15595295Google Scholar
  55. 55.
    Kawai M et al (1999) Micromechanical analysis for hysteretic behaviour of unidirectional TiNi SMA fiber composites. J Intell Mater Syst Struct 10:14–28Google Scholar
  56. 56.
    Lee HJ, Lee JJ (2000) A numerical analysis of the buckling and post buckling behaviour of laminated composite shells with embedded shape memory alloy wire actuators. Smart Mater Struct 9:780–787CrossRefGoogle Scholar
  57. 57.
    Ghomshei MM et al (2001) Finite element modelling of shape memory alloy composite actuators: theory and experiment. J Intell Mater Syst Struct 12:761–773CrossRefGoogle Scholar
  58. 58.
    Sun SS, Sun G, Wu JS (2002) Thermo-viscoelastic bending analysis of a shape memory alloy hybrid epoxy beam. Smart Mater Struct 11:970–975CrossRefGoogle Scholar
  59. 59.
    Tawfik M, Ro JJ, Mei C (2002) Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates. Smart Mater Struct 11:297–307CrossRefGoogle Scholar
  60. 60.
    Kuo SY, Shiau LC, Chen KH (2009) Buckling analysis of shape memory alloy reinforced composite laminates. Compos Struct 90:188–195CrossRefGoogle Scholar
  61. 61.
    Balapgol BS, Bajoria KM, Kulkarni SA (2006) Natural frequencies of a multilayer SMA laminated composite cantilever plate. Smart Mater Struct 15:1021–1032CrossRefGoogle Scholar
  62. 62.
    Piao M, Otsuka K, Miyazaki S, Horikawa H (1993) Mechanism of the As temperature increase by pre-deformation in thermo-elastic alloys. Mater Trans JIM 34:919–929CrossRefGoogle Scholar
  63. 63.
    Liu Y, Galvin SP (1997) Criteria for pseudo-elasticity in near-equiatomic NiTi shape memory alloys. Acta Mater 45:4431–4439CrossRefGoogle Scholar
  64. 64.
    Saburi T, Tatsumi T, Nenno SJ (1982) Effects of heat treatment of mechanical behaviour of TiNi alloys. J Phys 43:261–266Google Scholar
  65. 65.
    Miyazaki S, Otsuka K (1986) Deformation and transformation behaviour associated with the R-phase in Ti-Ni alloys. Metall Trans A 17:53–63CrossRefGoogle Scholar
  66. 66.
    Masdeu F, Pons J, Santamarta R, Cesari E, Dutkiewicz J (2008) Effect of precipitates on the stress–strain behaviour under compression in polycrystalline Ni–Fe–Ga alloys. Mater Sci Eng A 481–482:101–104CrossRefGoogle Scholar
  67. 67.
    Poon C-K, Zhou L-M, Jin W, Shi S-Q (2004) Interfacial debond of SMA composites. Smart Mater Struct 14:29–37CrossRefGoogle Scholar
  68. 68.
    Wang XL, Hu GK (2005) Stress transfer for a SMA fiber pulled out from an elastic matrix and related bridging effect. Compos Part A 36:1142–1151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • A. Lebied
    • 1
  • B. Necib
    • 1
  • M. L. Sahli
    • 1
    • 2
  • J-C. Gelin
    • 2
  • T. Barrière
    • 2
  1. 1.Mechanics Laboratory, Faculty of Engineering SciencesUniversity MentouriConstantineAlgeria
  2. 2.Applied Mechanics Department, CNRS UMR 6174Femto-st InstituteBesançonFrance

Personalised recommendations