Critical analysis of friction stir-based manufacturing processes



In this study, a detailed analysis of friction stir-based processes that can significantly contribute to joining of materials and surface property enhancement has been completed. Past, present, and future projections, advantages and disadvantages, technological barriers, and drawbacks of these processes have been given. Detailed explanations of the recent developments of friction stir-based processes and main components are given. Potential industrial applications have been assessed and evaluated using economic and technological considerations. In industrial applications, friction stir-based processes can be used in conjunction with additive processes such as laser-engineered near net shaping, thermal spraying and laser-assisted direct metal deposition processes. Developments in friction stir-based processes have led to improved metallurgical and mechanical properties such as microstructure modification, refinement, homogenization, surface cladding, corrosion, fatigue, wear, and hardness of metallic materials. The results of the study conclusively predict that reasonable costs and improved properties of processed materials will lead to a substantial increase in the use of friction stir-based processes.


Friction stir welding FSW Friction stir processing Friction stir hardening Riveting Microstructure modification Friction stir channeling Hybrid processing Hybrid manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mehta KP, Badheka VJ (2015) Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7176-1 Google Scholar
  2. 2.
    Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. Int Met Rev 54(2):49–93CrossRefGoogle Scholar
  3. 3.
    Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39A:642–658CrossRefGoogle Scholar
  4. 4.
    Carlone P, Astarita A, Palazzo GS, Paradiso V, Squillace A (2015) Microstructural aspects in Al–Cu dissimilar joining by FSW. Int J Adv Manuf Technol. doi:10.1007/s00170-015-6874-z Google Scholar
  5. 5.
    Abdolahzadeh A, Omidvar H, Safarkhanian MA, Bahrami M (2014) Studying microstructure and mechanical properties of SiC-incorporated AZ31 joints fabricated through FSW: the effects of rotational and traveling speeds. Int J Adv Manuf Technol 75:189–196. doi:10.1007/s00170-014-6205-9 CrossRefGoogle Scholar
  6. 6.
    Xu N, Ueji R, Fujii H (2015) Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling. Sci Technol Weld Join 20:91–99. doi:10.1179/1362171814Y.0000000261 CrossRefGoogle Scholar
  7. 7.
    Bilici MK, Yükler AI, Kastan A (2014) Effect of the tool geometry and welding parameters on the macrostructure, fracture mode and weld strength of friction-stir spot-welded polypropylene sheets. Mater Technol 48:705–711Google Scholar
  8. 8.
    Zhou L, Zhou WL, Huang YX, Feng JC (2015) Interface behavior and mechanical properties of 316L stainless steel filling friction stir welded joints. Int J Adv Manuf Technol. doi:10.1007/s00170-015-7237-5 Google Scholar
  9. 9.
    Sergio MOT (2011) Design and advanced manufacturing of aircraft structures using friction stir welding, a dissertation submitted to the Faculty of Engineering of the University of Porto for the degree of Doctor of Philosophy in Leaders for Technical Industries of the MIT-Portugal Program, PortoGoogle Scholar
  10. 10.
    Hsieh MJ, Chiou YC, Lee RT (2015) Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool. J Mater Process Technol 224:149–155. doi:10.1016/j.jmatprotec.2015.04.033 CrossRefGoogle Scholar
  11. 11.
    Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ (1991) G.B. Patent Application No. 9125978Google Scholar
  12. 12.
    Karthikeyan L, Senthilkumar VS, Balasubramanian V, Natarajan S (2009) Mechanical property and microstructural changes during friction stir processing of cast aluminum. Mater Des 30:2237–2242CrossRefGoogle Scholar
  13. 13.
    Wang Y, Mishra RS (2007) Finite element simulation of selective superplastic forming of friction stir processed 7075 Al alloys. Mater Sci Eng A 2007(463):245–248CrossRefGoogle Scholar
  14. 14.
    Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng 459:7–18CrossRefGoogle Scholar
  15. 15.
    Zhao X, Kalya P, Landers RG, Krishnamurthy K (2009) Empirical dynamic modeling of friction stir welding processes. J Manuf Sci Eng 131, 0210011-0210011-9. doi:10.1115/1.3075872 CrossRefGoogle Scholar
  16. 16.
    Woo W, Feng Z, Hubbard CR, David SA, Wang XL, Clausen B, Ungar T (2007) In situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminium alloy. Sci Technol Weld Join 12(4):298–303CrossRefGoogle Scholar
  17. 17.
    Werschmoeller D, Ehmann K, Li X (2011) Tool embedded thin film microsensors for monitoring thermal phenomena at tool-workpiece interface during machining. J Manuf Sci Eng 133(2), 021007-021007-8. doi:10.1115/1.4003616 CrossRefGoogle Scholar
  18. 18.
    Mishra RS, Mahoney WM, McFadden SX, Mara NA, Mukherjee AK (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater 42:163–168CrossRefGoogle Scholar
  19. 19.
    Ipekoğlu G, Erim S, Kıral BG, Çam G (2013) Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates. Kovove Mater 51:155–163Google Scholar
  20. 20.
    Ferraz MFS (2012) Friction stir channelling—dissertation for PHD in Mech Eng, Instituto Superior Tecnico, Universidade Tecnica de Lisboa p. 24Google Scholar
  21. 21.
    Doude RH, Haley R, Schneider JA, Nunes AC (2014) Influence of the tool shoulder contact conditions on the material flow during friction stir welding. Metall Mater Trans A 45:4411–4422CrossRefGoogle Scholar
  22. 22.
    Mofid AM, Zadeh AB, Ghani FMM, Gur CH (2012) Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen: an improved method to join Al alloys to Mg alloys. Metall Mater Trans A 43A:5106–5114CrossRefGoogle Scholar
  23. 23.
    Kulekci MK, Şik A, Kaluç E (2008) Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints. Int J Adv Manuf Technol 36:877–882CrossRefGoogle Scholar
  24. 24.
    Gungor B, Kaluc E, Taban E, Sik A (2014) Mechanical, fatigue and microstructural properties of friction stir welded 5083-H111 and 6082-T651 aluminum alloys. Mater Des 56:84–90CrossRefGoogle Scholar
  25. 25.
    Xu VF, Liu JH, Chen DL, Luan GH (2014) Low-cycle fatigue of a friction stir welded 2219-T62 aluminum alloy at different welding parameters and cooling conditions. Int J Adv Manuf Technol 74:209–218CrossRefGoogle Scholar
  26. 26.
    Çam G, Mistikoglu S (2014) Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform 23:1936–1953CrossRefGoogle Scholar
  27. 27.
    Kulekci MK (2003) Mechanical properties of friction stir-welded joints of AlCu4SiMg aluminium alloy. Kovove Mater 41(2):97–105Google Scholar
  28. 28.
    Khairuddin JT, Abdullah J, Hussain Z, Almanar IP (2012) Principles and Thermo-Mechanical Model of Friction Stir Welding. In: Kovacevic R (Ed), Welding Processes, In Tech, p 191–216Google Scholar
  29. 29.
    Bozkurt Y, Salman S, Çam G (2013) The effect of welding parameters on Lap-shear tensile properties of dissimilar friction stir spot welded AA5754-H22/2024-T3 joints. Sci Technol Weld Join 18:337–345CrossRefGoogle Scholar
  30. 30.
    Ipekoğlu G, Erim S, Çam G (2014) Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-Alloy plates with different temper conditions. Metall Mater Trans A 45(2):864–877CrossRefGoogle Scholar
  31. 31.
    Kulekci MK, Kaluç E, Şik A, Basturk O (2014) Experimental comparison of mig and friction stir welding processes for en AW-6061-T6 (Al Mg1 Si Cu) aluminium alloy. Arab J Sci Eng 35:321–330Google Scholar
  32. 32.
    Kulekci MK, Sik A (2006) Effects of tool rotation and transverse speed on fatigue properties of friction stir welded AA 1050-H18 aluminium alloy. Arch Metall Mater 51:213–216Google Scholar
  33. 33.
    Kulekci MK, Esme U, Er O (2011) Experimental comparison of resistance spot welding and friction-stir spot welding processes for the en aw 5005 aluminum alloy. Mater Technol 45:395–399Google Scholar
  34. 34.
    Yin YH, Sun N, North TH, Hu SS (2010) Hook formation and mechanical properties in AZ31 friction stir spot welds. J Mater Process Technol 210:2062–2070CrossRefGoogle Scholar
  35. 35.
    Scotchmer N, Chan K (2012) What’s new for welding aluminum in the auto industry. Weld J 91:34–37Google Scholar
  36. 36.
    Barlas Z, Ozsrac U (2012) Effects of FSW parameters on joint properties of AlMg3 alloy. Weld J 91:16–22Google Scholar
  37. 37.
    Yuan W, Mishra RS, Webb S, Chen YL, Carlsson B, Herling DR, Grant GJ (2011) Effect of tool design and process parameters on properties of Al alloy 6016 friction. J Mater Process Technol 211:972–977CrossRefGoogle Scholar
  38. 38.
    Kallee SW, Davenport J, Nicholas ED (2002) Railway manufacturers implement friction stir welding. Weld J 81:47–50Google Scholar
  39. 39.
    Liu F, Ma Z (2008) Effect of friction stir processing on the microstructure of as-cast 7075 aluminum alloy. Acta Metall Sin 44(3):319–324Google Scholar
  40. 40.
    Fujii H, Cui L, Maeda M, Nogi K (2006) Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng A 419:25–31CrossRefGoogle Scholar
  41. 41.
    Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801CrossRefGoogle Scholar
  42. 42.
    Tao Y, Zhang Z, Ni DR, Wang D, Xiao BL, Ma ZY (2014) Influence of welding parameter on mechanical properties and fracture behavior of friction stir welded Al-Mg-Sc joints. Mater Sci Eng A 612:236–245CrossRefGoogle Scholar
  43. 43.
    Ahmadkhaniha D, Sohi H, Zarei-Hanzaki A (2014) Optimisation of friction stir processing parameters to produce sound and fine grain layers in pure magnesium. Sci Technol Weld Join 19:235–241CrossRefGoogle Scholar
  44. 44.
    Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool-workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manuf Technol 71(1–4):165–179CrossRefGoogle Scholar
  45. 45.
    Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2011) Toward automation of friction stir welding through temperature measurement and closed-loop control. J Manuf Sci Eng 2011(133):1–12. doi:10.1115/1.4005034 Google Scholar
  46. 46.
    Simar A, Bréchet Y, Meester B, Denquin A, Pardoen T (2007) Microstructure, local and global mechanical properties of friction stir welds in aluminium alloy 6005A-T6. Mater Sci Eng A 486:85–95CrossRefGoogle Scholar
  47. 47.
    Zahmatkesh B, Enayati MH, Karimzadeh F (2010) Tribological and microstructural evaluation of friction stir processed Al2024 alloy. Mater Des 31:4891–4896CrossRefGoogle Scholar
  48. 48.
    Behnagh RA, Givi MKB, Akbari M (2012) Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates. Mater Manuf Process 27:636–640CrossRefGoogle Scholar
  49. 49.
    Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39:851–865CrossRefGoogle Scholar
  50. 50.
    Fuller CB, Mahoney MW, Calabrese M, Micona L (2010) Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds. Mater Sci Eng A 527:2233–2240. doi:10.1016/j.msea.2009.11.057 CrossRefGoogle Scholar
  51. 51.
    Miles MP, Melton DW, Nelson TE (2005) Formability of friction-stir-welded dissimilar-aluminum-alloy sheets. Metall Mater Trans A 36A:3335–3342CrossRefGoogle Scholar
  52. 52.
    Ramulu PJ, Narayanan RG, Kailas SV (2013) Forming limit investigation of friction stir welded sheets: influence of shoulder diameter and plunge depth. Int J Adv Manuf Technol 69:2757–2772CrossRefGoogle Scholar
  53. 53.
    Silva MB, Skjoedt M, Vilaça P, Bay N, Martins PAF (2009) Single point incremental forming of tailored blanks produced by friction stir welding. J Mater Process Technol 209:811–820CrossRefGoogle Scholar
  54. 54.
    Muci-Küchler KH, Kalagara S (2010) Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model. J Manuf Sci Eng 132(1), 0145031-0145031-5. doi:10.1115/1.4000881 CrossRefGoogle Scholar
  55. 55.
    Boiocchi F (2014) Friction stir spot welding applied to TP AA6061-T4 sheet metals Metalworking World Magazine. 15 March: pp. 1–5Google Scholar
  56. 56.
    Kulekci MK, Er O (2012) Determination of optimum welding parameter levels for friction stir spot welded en AW - 5005(Al Mg1) aluminium alloy. J Fac Eng Archit Gazi Univ 27(3):537–545Google Scholar
  57. 57.
    Kulekci MK (2014) Effects of process parameters on tensile shear strength of friction stir spot welded aluminium alloy (EN AW 5005). Arch Metall Mater 59:221–224. doi:10.2478/amm-2014-0035 Google Scholar
  58. 58.
    Uematsu Y, Tokaji K, Tozaki Y, Kurita T, Murata S (2008) Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al − Mg − Si alloy. Int J Fatigue 30:1956–1966CrossRefGoogle Scholar
  59. 59.
    Shilling C, Santos JD (2002) Method and device for joining at least two adjoining work pieces by friction welding: Patent Application No. US0179682 [P]. 2002-12-05Google Scholar
  60. 60.
    Mazzaferro JAE, Rosendo TS, Mazzaferro CCP, Ramos FD, Tier MAD, Strohaecker TR, dos Santos JF (2009) Preliminary study on the mechanical behavior of friction spot weld. Soldagem e Inspecao 14:238–247Google Scholar
  61. 61.
    Venukumar S, Yalagi S, Muthukumaran S (2013) Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061-T6 using filler plate. Trans Nonferrous Metals Soc China 23:2833–2842CrossRefGoogle Scholar
  62. 62.
  63. 63.
    Rodelas JM, Lippold JC, Rule JR, Livingston J (2011): Friction stir processing as a base metal preparation technique for modification of fusion weld microstructures. In: Mishra RS, Mahoney WW, Lienert TJ (Ed) Friction Stir Welding and Processing VI, Minerals, Metals & Materials Society (TMS), pp. 21–36Google Scholar
  64. 64.
    Li YB, Wei ZY, Wang ZZ, Li YT (2013) Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B. J Manuf Sci Eng 135:1–7. doi:10.1115/1.4025421 CrossRefGoogle Scholar
  65. 65.
    Ma G (2012) A thesis-friction-stir riveting, characteristics of friction-stir riveted joints. The University of Toledo, ToledoGoogle Scholar
  66. 66.
    Luo H (2008) New joining techniques for magnesium alloy sheets, MS thesis. Institute of Metal Research, Chinese Academy of Sciences, China, pp 48–63Google Scholar
  67. 67.
    Yang XW, Fu T, Li WY (2014) Friction stir spot welding: a review on joint macro- and microstructure, property, and process modelling. Adv Mater Sci Eng 2014:1–11Google Scholar
  68. 68.
    Ferraz MFS (2012) Friction stir channelling, dissertation for PHD. Mech Eng Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Lisboa, pp 67–82Google Scholar
  69. 69.
    Nicholas ED, Thomas WM (1998) A review of friction processes for aerospace applications. Int J Mater Prod Technol 13:45–55Google Scholar
  70. 70.
    Hsu CJ, Kao PW, Ho NJ (2005) Ultrafine-grained Al–Al2Cu composite produced in situ by friction stir processing. Scr Mater 53:341–345CrossRefGoogle Scholar
  71. 71.
    Santella ML, Engstrom T, Storjohann D, Pan TY (2005) Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356. Scr Mater 53:201–206CrossRefGoogle Scholar
  72. 72.
    Surekha K, Murty BS, Rao KB (2008) Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloy. Surf Coat Technol 202:4057–4068CrossRefGoogle Scholar
  73. 73.
    Alidokht SA, Abdollah-zadeh A, Soleymani S, Assadi H (2011) Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Mater Des 37:2727–2733CrossRefGoogle Scholar
  74. 74.
    Ma ZY, Sharma SR, Mishra RS (2006) Microstructural modification of as-cast Al–Si–Mg alloy by friction stir processing. Metall Mater Trans A 37:3233–3236CrossRefGoogle Scholar
  75. 75.
    Lee WB, Yeon YM, Jung SB (2003) The improvement of mechanical properties of friction-stir-welded A356 Al alloy. Mater Sci Eng A 355:154159CrossRefGoogle Scholar
  76. 76.
    Shinoda T, Kawai M (2003) Surface modification by novel friction thermomechanical process of aluminium alloy castings. Surf Coat Technol 169:456459Google Scholar
  77. 77.
    Mishra RS, Ma ZY (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341:307–310CrossRefGoogle Scholar
  78. 78.
    Kwon YJ, Shigematsu I, Saito N (2009) Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scr Mater 49:785–789CrossRefGoogle Scholar
  79. 79.
    Gibson LJ, Ashby MF (1997) Cellular solids: structures and properties, 2nd edn. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  80. 80.
    Ashby M, Fleck N, Wadley H, Hutchinson J, Gibson L (2000) Metal foams: a design guide. Butterworh-Heinemann, BostonGoogle Scholar
  81. 81.
    Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632CrossRefGoogle Scholar
  82. 82.
    Yi F, Zhu Z, Zu F, Hu S, Yi P (2001) Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Mater Charact 47:417–422CrossRefGoogle Scholar
  83. 83.
    Eksi A, Kulekci MK (2004) Hardness and densification behaviour of copper and bronze powders compacted with uniaxial die and cold isostatic pressing processes. Metalurgija 43:129–134Google Scholar
  84. 84.
    Vilaça P, Vidal C (2011) Modular adjustable tool and correspondent process for opening continuous internal channels in solid components. National patent pending N.° 105628 TGoogle Scholar
  85. 85.
    Balasubramanian N, Mishra RS, Krishnamurthy K (2011) Process forces during friction stir channeling in an aluminum alloy. Int J Mater Prod Technol 211:305–311CrossRefGoogle Scholar
  86. 86.
    Balasubramanian N, Mishra RS, Krishnamurthy K (2009) Friction stir channeling: characterization of the channels. J Mater Process Technol 209:3696–3704CrossRefGoogle Scholar
  87. 87.
    Vidal C, Infante V, Vilaça P (2012) Mechanical characterization of friction stir channels under internal pressure and in-plane bending. Key Eng Mater 488–489:105–108Google Scholar
  88. 88.
    Filgueiras M, Soares F (2012) Friction stir channeling industrial applications- dissertation for the degree of master in mechanical engineering. Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, pp 58–72Google Scholar
  89. 89.
    Shah RK, Sekulic DP (2003) Fundamentals of Heat Exchanger Design. First ed., Wiley, pp. 1–73Google Scholar
  90. 90.
    Wadekar VV (2005) Heat exchangers in process industry and mini- and microscale heat transfer. Sci Eng Tech 1:318–325Google Scholar
  91. 91.
    Fujii H, Yamaguchi Y, Kikuchi T, Kiguchi S, Nogi K (2009) Surface hardening of two cast irons by friction stir processing. J Phys Conf Ser 165:012013–012018CrossRefGoogle Scholar
  92. 92.
    Fujii H, Ueji R, Takada Y, Kitahara H, Tsuji N, Nakata K, Nogi K (2006) Friction stir welding of ultrafine grained interstitial free steels. Mater Trans 47:239–242CrossRefGoogle Scholar
  93. 93.
    Cui L, Fujii H, Tsuji N, Nogi K (2007) Friction stir welding of a high carbon steel. Scr Mater 56:637–640. doi:10.1016/j.scriptamat.2006.12.004 CrossRefGoogle Scholar
  94. 94.
    Mukherjee S, Ghosh AK (2011) Friction stir processing of direct metal deposited copper–nickel 70/30. Mater Sci Eng A 528:3289–3294. doi:10.1016/j.msea.2011.01.063 CrossRefGoogle Scholar
  95. 95.
    Newkirk J, Mishra RS, Thomas J, Hawk JA (2003) Friction stir processing to create surface composite. In: Advanced powder metallurgy & particulate materials. MPIF, Princeton, pp 6–60Google Scholar
  96. 96.
    Johannes LB, Yowell LL, Sosa E, Arepalli S, Mishra RS (2006) Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology 17:3081–3084CrossRefGoogle Scholar
  97. 97.
    Charit I, Mishra RS (2003) High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater Sci Eng A 341:290–296CrossRefGoogle Scholar
  98. 98.
    Fujii H, Inada K, Ji YS, Morisada Y, Nogi K (2010) Design of Joint Properties by Friction Powder Processing. In: Chandra T, Wanderka N, Reimers W, Ionescu M (Ed). Zurich: Trans Tech Publications Ltd, pp. 2058–2063Google Scholar
  99. 99.
    Shamsipur A, Kashani-Bozorg SF, Zarei-Hanzaki A (2011) The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf Coat Technol 206:1372–1381CrossRefGoogle Scholar
  100. 100.
    Marzoli LM, Strombeck AV, Santos JFD, Gambaro C, Volpone LM (2006) Friction stir welding of an AA6061/Al2O3/20p reinforced alloy. Compos Sci Technol 66:363–371CrossRefGoogle Scholar
  101. 101.
    Ceschini L, Boromei I, Minak G, Morri A, Tarterini F (2007) Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite. Compos Sci Technol 67:605–615CrossRefGoogle Scholar
  102. 102.
    Nami H, Adgi H, Sharifitabar M, Shamabadi H (2011) Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite. Mater Des 32:976–983CrossRefGoogle Scholar
  103. 103.
    Thangarasu A, Murugan N, Dinaharan I, Vijay SJ (2012) Microstructure and microhardness of AA1050/TiC surface composite fabricated using friction stir processing. Sadhana 37(5):579–586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Mustafa Kemal Kulekci
    • 1
  • Ugur Esme
    • 1
  • Baris Buldum
    • 1
  1. 1.Institute of Applied and Natural Sciences, Faculty of Tarsus Technology, Mechanical and Manufacturing Engineering DepartmentMersin UniversityTarsusTurkey

Personalised recommendations