On the machinability of die/mold D2 steel material

  • A. Hosseini
  • H. M. Hussein
  • H. A. Kishawy


The presented paper experimentally studies the machining of American Iron and Steel Institute (AISI) D2 steel as a frequently used material in die and mold making industry. Several experimentations have been carried out using different cutting conditions such as feed rate, depth of cut, and machining time. The consequent effects of these parameters on the tool and workpiece in terms of tool wear, cutting forces and power, and workpiece surface integrity (surface roughness) have been recorded to investigate the machinability of D2 steel material. The results mainly reveal that depth of cut, feed rate, and machining time are the most dominant parameters that play an important role in machinability characteristics of D2 steels.


Hard machining D2 steel Tool wear Cutting power Surface roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koshy P, Dewes R, Aspinwall D (2002) High speed end milling of hardened AISI D2 tool steel (∼58 HRC). J Mater Process Technol 127(2):266–273CrossRefGoogle Scholar
  2. 2.
    Coldwell H, Woods R, Paul M, Koshy P, Dewes R, Aspinwall D (2003) Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools. J Mater Process Technol 135(2):301–311CrossRefGoogle Scholar
  3. 3.
    El-Wardany T, Kishawy H, Elbestawi M (2000) Surface integrity of die material in high speed hard machining, part 1: micrographical analysis. J Manuf Sci Eng 122(4):620–631CrossRefGoogle Scholar
  4. 4.
    Lajis MA, Amin A, Karim A, Daud C, Radzi M, Ginta TL (2009) Hot machining of hardened steels with coated carbide inserts. Am J Eng Applied Scie 2(2):421–427CrossRefGoogle Scholar
  5. 5.
    Amin AN, Dolah SB, Mahmud MB, Lajis M (2008) Effects of workpiece preheating on surface roughness, chatter and tool performance during end milling of hardened steel D2. journal of materials processing technology 201 (1):466–470Google Scholar
  6. 6.
    Gaitonde V, Karnik S, Figueira L, Davim JP (2009) Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts. Int J Refract Met Hard Mater 27(4):754–763CrossRefGoogle Scholar
  7. 7.
    Shaw M, Vyas A (1993) Chip formation in the machining of hardened steel. CIRP Annals-Manuf Technol 42(1):29–33CrossRefGoogle Scholar
  8. 8.
    Davies M, Chou Y, Evans C (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. CIRP Annals-Manuf Technol 45(1):77–82CrossRefGoogle Scholar
  9. 9.
    Shaw MC, Vyas A (1998) The mechanism of chip formation with hard turning steel. CIRP Ann Manuf Technol 47(1):77–82. doi: 10.1016/S0007-8506(07)62789-9 CrossRefGoogle Scholar
  10. 10.
    Kishawy EAH (1998) Chip formation and surface integrity in high speed machining of hardened steel.Google Scholar
  11. 11.
    Kishawy H, Elbestawi M Effect of process parameters on chip morphology when machining hardened steel. In: Proc. IMECE, ASME, 1997. vol 2. pp 13–20Google Scholar
  12. 12.
    Rech J, Moisan A (2003) Surface integrity in finish hard turning of case-hardened steels. Int J Mach Tools Manuf 43(5):543–550CrossRefGoogle Scholar
  13. 13.
    Özel T, Karpat Y (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int J Mach Tools Manuf 45(4):467–479CrossRefGoogle Scholar
  14. 14.
    Özel T, Karpat Y, Figueira L, Davim JP (2007) Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. J Mater Process Technol 189(1):192–198CrossRefGoogle Scholar
  15. 15.
    Grzesik W (2008) Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools. Wear 265(3):327–335CrossRefGoogle Scholar
  16. 16.
    Kishawy H (2002) An experimental evaluation of cutting temperatures during high speed machining of hardened D2 tool steel.Google Scholar
  17. 17.
    Ueda T, Al Huda M, Yamada K, Nakayama K, Kudo H (1999) Temperature measurement of CBN tool in turning of high hardness steel. CIRP Ann Manuf Technol 48(1):63–66CrossRefGoogle Scholar
  18. 18.
    Benhabib B (2003) Manufacturing: design, production, automation, and integration. CRC PressGoogle Scholar
  19. 19.
    Qian L, Lei S, Chen R (2006) Finite element analysis of hard turning bearing 201 steel AISI 52100 with various cutting inserts, ASME Pressure Vessels 202 and Piping Conference. PVP-ICPVT11-93149 July, 2006, Vancouver, BC, CanadaGoogle Scholar
  20. 20.
    Qian L, Hossan MR (2007) Effect on cutting force in turning hardened tool steels with cubic boron nitride inserts. J Mater Process Technol 191(1):274–278CrossRefGoogle Scholar
  21. 21.
    Huang Y, Liang SY (2005) Modeling of cutting forces under hard turning conditions considering tool wear effect. J Manuf Sci Eng 127(2):262–270MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Machining Research Laboratory (MRL), Faculty of Engineering and Applied ScienceUniversity of Ontario Institute of Technology (UOIT)OshawaCanada
  2. 2.Advanced Manufacturing InstituteKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations