Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate

  • Jian He
  • Zemin Ling
  • Huimin Li


In the present study, the effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded AA 6061-T6 was investigated. AA 6061-T6 plates with a thickness of 16 mm were friction stir welded using three different tool rotational speeds of 500, 700, and 900 rpm and a constant welding speed of 120 mm/min. The results indicate that the longitudinal residual stress distribution is an M-shaped distribution in the transverse direction; in weld region, the tensile longitudinal stress in the advancing side is larger than that in the retreating side. With increasing rotation speed, the values of the tensile longitudinal residual stresses increased slightly, the peak tensile longitudinal stresses appear at the edge of the shoulder in the AS of the joints, and the maximum value of tensile longitudinal residual stress was 153 MPa with the rotation speed of 900 rpm which reaches up to 55 % of the yield strength of AA 6061-T6. Meanwhile, only the appearance of welded joint with 700 rpm is smooth. The grain size in WNZ grows up with increasing the rotation speed. The microhardness variation is determined by microstructure evolution, and the average microhardness decreases with increasing the rotation speed. The welded joint with the rotation speed of 700 rpm performs the maximum tensile strength of 236 MPa which is 76 % of the base material strength.


Friction stir welding 6061-T6 aluminum alloy Thick plate Residual stress Microstructure Tensile properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moshwan R, Yusof F, Hassan MA, Rahmat SM (2015) Effect of tool rotational speed on force generation, microstructure and mechanical properties of friction stir welded Al–Mg–Cr–Mn (AA 5052-O) alloy. Mater Des 66:118–128CrossRefGoogle Scholar
  2. 2.
    Zhang JQ, Shen YF, Li B, Xu HS, Yao X, Kuang BB, Gao JC (2014) Numerical simulation and experimental investigation on friction stir welding of 6061-T6 aluminum alloy. Mater Des 60:94–101CrossRefGoogle Scholar
  3. 3.
    Lakshminarayanan AK, Balasubramanian V, Elangovan K (2008) Effect of welding processes on tensile properties of AA6061 aluminium alloy joints. Int J Adv Manuf Technol 40(3–4):286–296Google Scholar
  4. 4.
    Ambriz RR, Chicot D, Benseddiq N, Mesmacque G, de la Torre SD (2011) Local mechanical properties of the 6061-T6 aluminium weld using micro-traction and instrumented indentation. Eur J Mech A Solids 30(3):307–315CrossRefzbMATHGoogle Scholar
  5. 5.
    Mao YQ, Ke LM, Liu FC, Liu Q, Huang CP, Xing L (2014) Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Mater Des 62:334–343CrossRefGoogle Scholar
  6. 6.
    Woo W, Choo H, Brown DW, Feng ZL, Liaw PK (2006) Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminum alloy. Mater Sci Eng A 437(1):64–69CrossRefGoogle Scholar
  7. 7.
    Zhou L, Zhou WL, Huang YX, Feng JC (2015) Interface behavior and mechanical properties of 316L stainless steel filling friction stir welded joints. Int J Adv Manuf Technol. doi: 10.1007/s00170-015-7237-5 Google Scholar
  8. 8.
    Aghaei A, Dehghani K (2015) Characterizations of friction stir welding of dissimilar Monel400 and stainless steel 316. Int J Adv Manuf Technol 77:573–579CrossRefGoogle Scholar
  9. 9.
    Erdem M (2015) Investigation of structure and mechanical properties of copper-brass plates joined by friction stir welding. Int J Adv Manuf Technol 76(9–12):1583–1592CrossRefGoogle Scholar
  10. 10.
    Reynolds AP, Hood E, Tang W (2005) Texture in friction stir welds of Timetal 21S. Scr Mater 52(6):491–494CrossRefGoogle Scholar
  11. 11.
    Dawood HI, Mohammed KS, Rahmat A, Uday MB (2015) The influence of the surface roughness on the microstructures and mechanical properties of 6061 aluminium alloy using friction stir welding. Surf Coat Technol 270:272–283CrossRefGoogle Scholar
  12. 12.
    Citarella R, Carlone P, Lepore M, Palazzo GS (2015) Numerical–experimental crack growth analysis in AA2024-T3 FSWed butt joints. Adv Eng Softw 80:47–57CrossRefGoogle Scholar
  13. 13.
    Carlone P, Citarella R, Lepore M, Palazzo GS (2014) A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints. Int J Mater Form 554–557:2118–2126Google Scholar
  14. 14.
    Moreira PMGP, de Jesus AMP, Ribeiro AS, de Castro PMST (2008) Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: a comparison. Theor Appl Fract Mech 50(2):81–91CrossRefGoogle Scholar
  15. 15.
    Hou JC, Liu HJ, Zhao YQ (2014) Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by self-reacting friction stir welding tool. Int J Adv Manuf Technol 73(5–8):1073–1079CrossRefGoogle Scholar
  16. 16.
    Ramulu PJ, Narayanan RG, Kailas SV, Reddy J (2013) Internal defect and process parameter analysis during friction stir welding of Al 6061 sheets. Int J Adv Manuf Technol 65(9–12):1515–1528CrossRefGoogle Scholar
  17. 17.
    Sato YS, Urata M, Kokawa H (2002) Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A 33(3):625–635CrossRefGoogle Scholar
  18. 18.
    Upadhyay P, Reynolds A (2014) Effect of backing plate thermal property on friction stir welding of 25-mm-thick AA6061. Metall Mater Trans A 45(4):2091–2100CrossRefGoogle Scholar
  19. 19.
    He DQ, Luo W, Wu HG (2011) Microstructure and mechanical properties analysis on double-sides of friction stir welding joints of 60 mm 6061-T6 aluminum alloy plate. J Mater Eng 1(9):20–24Google Scholar
  20. 20.
    Riahi M, Nazari H (2009) Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int J Adv Manuf Technol 55(1–4):143–152Google Scholar
  21. 21.
    Liu C, Yi X (2013) Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method. Mater Des 46:366–371CrossRefGoogle Scholar
  22. 22.
    Aval HJ, Serajzadeh S, Sakharova NA, Kokabi AH, Loureiro A (2012) A study on microstructures and residual stress distributions in dissimilar friction-stir welding of AA5086–AA6061. J Mater Sci 47(14):5428–5437CrossRefGoogle Scholar
  23. 23.
    Aval HJ, Serajzadeh S, Kokabi AH (2012) Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086-AA6061. Int J Adv Manuf Technol 61(1–4):149–160CrossRefGoogle Scholar
  24. 24.
    Fadaeifard F, Matori KA, Toozandehjani M, Daud AR, Ariffin MKAM, Othman NK, Gharavi F, Ramzani AH, Ostovan F (2014) Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy. Trans Nonferrous Metals Soc China 24(4):1004–1011CrossRefGoogle Scholar
  25. 25.
    Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801CrossRefGoogle Scholar
  26. 26.
    Steuwer A, Peel MJ, Withers PJ (2006) Dissimilar friction stir welds in AA5083–AA6082: the effect of process parameters on residual stress. Mater Sci Eng A 441(1):187–196CrossRefGoogle Scholar
  27. 27.
    Fratini L, Zuccarello B (2006) An analysis of through-thickness residual stresses in aluminium FSW butt joints. Int J Mach Tools Manuf 46(6):611–619CrossRefGoogle Scholar
  28. 28.
    Tang W, Guo X, Mcclure JC, Murr LE, Nunes A (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7(2):163–172CrossRefGoogle Scholar
  29. 29.
    Lee WB, Yeon YM, Jun SB (2004) Mechanical properties related to microstructural variation of 6061 Al Alloy joints by friction stir welding. Mater Trans 45(5):1700–1705CrossRefGoogle Scholar
  30. 30.
    Elangovan K, Balasubramanian V, Babu S (2009) Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model. Mater Des 30(1):188–193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations