Turning of wood plastic composites by water jet and abrasive water jet

  • Zuzana Hutyrová
  • Jiří Ščučka
  • Sergej Hloch
  • Petr Hlaváček
  • Michal Zeleňák
ORIGINAL ARTICLE

Abstract

The paper deals with the verification of suitability of water jet and abrasive water jet application for the disintegration of rotating samples of wood plastic composites (WPCs) with diameter d = 36 mm. The influence of selected technological factors (traverse speed of cutting head v [mm/min] and size of abrasive particles [MESH]) on the topography of resulting surfaces has in particular been studied. Surface topography and quality have been assessed using the methods of optical and confocal microscopy and optical profilometry. The presented procedures and results of experiments demonstrate the technology of abrasive water jet as an appropriate tool for the rough machining of WPCs and similar composite materials. In addition, the application of this technology can effectively solve the problem of the melting of the polymer matrix and its subsequent sticking to the functional parts of a cutting tool resulting from conventional turning.

Keywords

Wood plastic composite Water jet Turning Traverse speed Size of abrasive particles Surface quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Youngquist JA (1999) Wood-based composites and panel products. In: Wood handbook—wood as an engineering material. Madison US Dept Agric, 10.1–10.31Google Scholar
  2. 2.
    Clemons C (2002) Wood-plastic composites in the United States: the interfacing of two industries. Forest Prod J 52:10–18Google Scholar
  3. 3.
    Hashish M (1995) Abrasive jets. In: Labus TJ (ed) Fluid jet technology: fundamentals and applications. WJTA, St. Louis, pp 4.1–4.52Google Scholar
  4. 4.
    Sitek L, Foldyna J, Souček K (2005) Shaping of rock specimens for testing of uniaxial tensile strength by high speed abrasive water jet: first experience. In: Konečný P (ed) Eurock 2005—impact of human activity on the geological environment. A.A. Balkema, London, pp 545–549Google Scholar
  5. 5.
    Maňková I (2000) Progressive technologies. Vienala, KošiceGoogle Scholar
  6. 6.
    Hashish M (1987) Turning with abrasive-waterjets—a first investigation. J Eng Ind Trans ASME 109:281–290CrossRefGoogle Scholar
  7. 7.
    Zhong ZW, Han ZZ (2002) Turning of glass with abrasive waterjet. Mater Manuf Process 17:330–349CrossRefGoogle Scholar
  8. 8.
    Manu R, Babu NR (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266:1091–1097CrossRefGoogle Scholar
  9. 9.
    Uhlmann E, Flögel K, Kretzschmar M, Faltin F (2012) Abrasive waterjet turning of high performance materials. In: Wegener K (ed) Procedia CIRP 1, Elsevier, 409–413Google Scholar
  10. 10.
    Li W, Zhu H, Wang J, Ali YM, Huang C (2013) An investigation into the radial-mode abrasive waterjet turning process on high tensile steels. Int J Mech Sci 77:365–376CrossRefGoogle Scholar
  11. 11.
    Liu D, Huang C, Wang J, Zhu H, Yao P, Liu Z (2014) Modeling and optimization of operating parameters for abrasive waterjet turning alumina ceramics using response surface methodology combined with Box–Behnken design. Ceram Int 40:7899–7908CrossRefGoogle Scholar
  12. 12.
    Hloch S, Hlaváček P, Vasilko K, Cárach J, Samardžič I, Kozak D, Hlavatý I, Ščučka J, Klich J, Klichová D (2014) Abrasive waterjet (AWJ) titanium tangential turning evaluation. Metalurgia 53:537–540Google Scholar
  13. 13.
    Pramanik A (2014) Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tool Manu 86:44–61CrossRefGoogle Scholar
  14. 14.
    Shanmughasundaram P (2014) Influence of abrasive water jet machining parameters on the surface roughness of eutectic Al-SI alloy-graphite composites. Mater Phys Mech 19:1–8Google Scholar
  15. 15.
    Szymani R, Dickinson FE (1975) Recent developments in wood machining processes: novel cutting techniques. Wood Sci Technol 9:113–128CrossRefGoogle Scholar
  16. 16.
    Mazurkiewicz M (1984) The separation of wood fibres by a high pressure water jet. In: Proc. of 7th international symposium on jet cutting technology, BHRA, Cranfield, 389–394Google Scholar
  17. 17.
    DuPlessis MP, Hashish M (1978) High energy water jet cutting equations for wood. J Eng Ind Trans ASME 100:452–458CrossRefGoogle Scholar
  18. 18.
    Lee HW (2004) Abrasive-assisted high energy water-jet machining characteristics of solid wood. J Korean Wood Sci Technol 32:1–7Google Scholar
  19. 19.
    Wang Z (2012) An investigation on water jet machining for hardwood floors. Eur J Wood Wood Prod 70:55–59CrossRefGoogle Scholar
  20. 20.
    Barcík Š, Kvietková M, Aláč P (2011) Effect of the chosen parameters on deflection angle between cutting sides during the cutting of agglomerated materials by waterjet. Wood Res-Slovakia 56:577–588Google Scholar
  21. 21.
    Kminiak R, Gaff M (2014) Fabrication of structural joinery items of solid wood by the mean of abrasive water jet method. Wood Res-Slovakia 59:499–508Google Scholar
  22. 22.
    Barcík Š, Kvietková M, Gašparík M, Kminiak R (2013) Influence of technological parameters on lagging size in cutting process of solid wood by abrasive water jet. Wood Res-Slovakia 58:627–636Google Scholar
  23. 23.
    Kvietková M, Barcík S, Gašparík M (2014) Optimization of the cutting process of wood-based agglomerated materials by abrasive water-jet. Acta Silv Lign Hung 10:31–47Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Zuzana Hutyrová
    • 1
  • Jiří Ščučka
    • 2
  • Sergej Hloch
    • 1
    • 2
  • Petr Hlaváček
    • 2
  • Michal Zeleňák
    • 2
  1. 1.Faculty of Manufacturing TechnologiesTechnical University of Košice with seat in PrešovPrešovSlovakia
  2. 2.Institute of Geonics of the CAS v.v.i.Ostrava-PorubaCzech Republic

Personalised recommendations