A review of micro-devices assembly techniques and technology

  • J. CecilEmail author
  • M. B. Bharathi Raj Kumar
  • Yajun Lu
  • Vinod Basallali


This paper provides a review of techniques and technology relevant to the field of micro-devices assembly (MDA). MDA is an emerging domain of importance which is expected to have a substantial impact on a range of industrial fields including sensors, surveillance devices, and semiconductor devices. This paper provides a review of a cross-section of research including micro-gripping design and manipulation techniques, work cell design and factory automation, self-assembly techniques, and virtual reality-based approaches in micro-assembly. A discussion of the key challenges for this domain along with directions for future research is also provided.


Micro-assembly Automation Gripping Virtual reality Work cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cecil J, Powell D, Vasquez D (2007) Assembly and manipulation of micro devices—a state of the art survey. Robot Comput Integr Manuf 23(5):580–588CrossRefGoogle Scholar
  2. 2.
    Salmeron AJ, Tarazon RL et al (2005) Recent development in micro-handling systems for micro-engineering. J Mater Process Technol 167(2–3):499–507CrossRefGoogle Scholar
  3. 3.
    Hassani Niaki M et al (2012) Deriving and analyzing the effective parameters in micro grippers performance. Scientica Iranica 19(6):1554–1563CrossRefGoogle Scholar
  4. 4.
    Ballandras S, Basrour S, Robert L, Megtert S, Blind P et al (1997) Micro grippers fabricated by the LIGA technique. Sensors Actuators A Phys 58(3):265–272CrossRefGoogle Scholar
  5. 5.
    Nashrul M, Shirinzadeh B (2009) Development of a high precision flexure based micro gripper. Precis Eng 33(4):362–370CrossRefGoogle Scholar
  6. 6.
    Ivanova K, Ivanov T et al (2006) Thermally driven micro gripper as a tool for micro assembly. Microelectric Eng 83(4–9):1393–1395CrossRefGoogle Scholar
  7. 7.
    Enikov ET, Lazarov KV (2001) Optically transparent gripper for microassembly. Proc SPIE Microrobotics Microassembly 4568:40–49CrossRefGoogle Scholar
  8. 8.
    Hamedi M, Salimi P, Vismeh M (2012) Simulation and experimental investigation of a novel electrostatic micro gripper system. Mechatronic Eng 98:467–471Google Scholar
  9. 9.
    Yi Y, Liu C (1999) Assembly of micro-optical devices using magnetic actuation. Sensors Actuators A Phys 78(2–3):205–211CrossRefGoogle Scholar
  10. 10.
    Wester B, Rajaraman S, Ross J et al (2011) Development and characterization of a packaged mechanically actuated microtweezer system. Sensors Actuators A Phys 167(2):502–511CrossRefGoogle Scholar
  11. 11.
    Chen BK, Zhang Y, Sun Y (2009) Active release of microobjects using a MEMS micro gripper to overcome adhesion forces. J Microelectromech Syst 18(3):652–659CrossRefGoogle Scholar
  12. 12.
    Khan S, Boer T, Estevez P, Langen HH, Schmidt RH (2010) Development of haptic micro gripper for microassembly operation. Haptics: Generating Perceiving Tangible Sensations Lect Notes Comp Sci 6192:309–314Google Scholar
  13. 13.
    Chesna JW, Smith ST, Hastings DJ, Nowakowski BK, Lin F et al (2012) Development of a micro-scale assembly facility with a three fingered, self-aware assembly tool and electro-chemical etching capabilities. Precis Assem Technol Syst IFIP Adv Inf Commun Technol 371:1–8CrossRefGoogle Scholar
  14. 14.
    Porta M, Tichem M (2010) Grasping and interaction force feedback in microassembly. Precis Assem Technol Syst IFIP Adv Inf Commun Technol 315:199–206CrossRefGoogle Scholar
  15. 15.
    Kohl M, Just E, Pleging W, Miyazaki S (2000) SMA micro gripper with integrated antagonism. Sensors Actuators A Phys 83(1–3):208–213CrossRefGoogle Scholar
  16. 16.
    Kohl M, Krevet B, Just E (2002) SMA micro gripper system. Sensors Actuators A Phys 97–98:646–652CrossRefGoogle Scholar
  17. 17.
    Roch I, Bidaud P, Collard D, Buchaillot L (2003) Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 13(2):330–336CrossRefGoogle Scholar
  18. 18.
    Kyung JH, Ko BG, Ha YH, Chung GJ (2008) Design of micro gripper for micromanipulation of microcomponents using SMA wires and flexible hinges. Sensors Actuators A Phys 141(1):144–150CrossRefGoogle Scholar
  19. 19.
    Lin CM, Fan CH, Lan CC (2009) A shape memory alloy actuated micro gripper with wide handling ranges. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July14–17, Singapore, ISBN 978-1-4244-2852-6Google Scholar
  20. 20.
    Daly M, Prequent A et al (2012) Fabrication of a novel laser-processed NiTi shape memory micro gripper with enhanced thermomechanical functionality. J Intell Mater Syst Struct 0:1–7Google Scholar
  21. 21.
    Li YF, Ho J, Li N (2000) Development of a physically behaved robot work cell in VR for task teaching. Robot Comput Integr Manuf 16(2–3):91–101CrossRefGoogle Scholar
  22. 22.
    Monferrer A, Bonyuet D (2002) Cooperative robot teleoperation through VR interfaces. Proceedings of International Conference on Information Visualization Environments, July 10–12, London, UK, ISBN 0-7695-1656-4Google Scholar
  23. 23.
    Shen Y, Xi N, Lai K, Li W (2004) Internet-based remote assembly of micro-mechanical-systems (MEMS). Assem Autom 24(3):289–296CrossRefGoogle Scholar
  24. 24.
    Luo Q, Xiao J (2006). Haptic simulation for micro/nano-scale optical fiber assembly. Proceedings of IEEE International Conference on Intelligent Robots and Systems, October 9–15, Beijing, 1353–1358, ISBN 1-4244-0259-XGoogle Scholar
  25. 25.
    Reinhart G, Reitar A (2011) An investigation of haptic feedback effects in telepresent microassembly. Prod Eng 5(5):581–586CrossRefGoogle Scholar
  26. 26.
    Estevez P, Mulder A, Schmidt RH (2012) 6-DoF miniature maglev positioning stage for application in haptic micro-manipulation. Mechatronics 22(7):1015–1022CrossRefGoogle Scholar
  27. 27.
    Bolopion A, Stolle C et al (2012) Vision based haptic feedback for remote micromanipulation in a SEM environment. Int J Optomechanics 6(3):236–252CrossRefGoogle Scholar
  28. 28.
    Cecil J, Jones J (2014) An advanced virtual environment for micro assembly. Int J Adv Manuf Technol 72(1):47–56CrossRefGoogle Scholar
  29. 29.
    Probst M, Vollmers K, Kratochvil BE, Nelson BJ (2006) “Design of an advanced microassembly system for the automated assembly of bio-microrobots”, Proc. 5th International Workshop on MicrofactoriesGoogle Scholar
  30. 30.
    Probst M, Hürzeler C, Borer R, Nelson BJ (2009) A microassembly system for the flexible assembly of hybrid robotic MEMS devices. Int J Optomechatronics 3(2):69–90CrossRefGoogle Scholar
  31. 31.
    Gopinath N, Cecil J, Powell D (2007) Micro devices assembly using virtual environments. J Intell Manuf 18(3):361–369CrossRefGoogle Scholar
  32. 32.
    Alex J, Vikramaditya B, Nelson B (1998) A VR teleoperator interface for assembly of hybrid MEMS prototypes. Proceedings of DETC’98 ASME Design Engineering Technical Conference, September 13–16, Atlanta, GAGoogle Scholar
  33. 33.
    Popa DO, Stephanou HE (2004) Micro and mesoscale robotic assembly. J Manuf Process 6(1):52–71CrossRefGoogle Scholar
  34. 34.
    Cassier C, Ferreira A, Hirai S (2002) Combination of vision servoing techniques and VR-based simulation for semi-autonomous microassembly workstation. Proceedings of the 2002 International Conference on Intelligent Robots and Systems, May 11–15, ISBN 0-7803-7272-7Google Scholar
  35. 35.
    Ferreira A, Hamdi M (2004) Microassembly planning using physically based models in virtual environment. Proceedings of the 2004 International Conference on Intelligent Robots and Systems, September 28–October 2, 4: 3369–3374, ISBN 0-7803-8463-6Google Scholar
  36. 36.
    Cecil J, Gobinath N (2005) Development of a virtual and physical work cell to assemble micro-devices. Robot Comput Integr Manuf 21(4–5):431–441CrossRefGoogle Scholar
  37. 37.
    Sun L, Tan F, Rong W, Zhu J (2005) A collision detection approach in virtual environment of micromanipulation robot. High Technol Lett 11(4):371–376Google Scholar
  38. 38.
    Tan FS, Sun LN, Rong BW, Zhu J, Xu L (2004) Modeling of micromanipulation robot in virtual environment. Actametallurgicasinica(English Letters) 17(2):194–198Google Scholar
  39. 39.
    Sulzmann A, Breguet JM, Jacot J (1995) Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision. Proceeding of SPIE on Microrobotics and Mechanical Systems 2593:38–49CrossRefGoogle Scholar
  40. 40.
    Liu Z, Chen H (2013) Process simulation of micro device with VR technology. Intell Comput Evol Comput Adv Intell Syst Comput 180:61–65Google Scholar
  41. 41.
    Zhou Q, Aurelian A et al (2001) A microassembly station with controlled environment. Proc SPIE Microrobotics Microassembly 4568:252–260CrossRefGoogle Scholar
  42. 42.
    Das AN, Murthy R, Popa DO et al (2012) A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans Autom Sci Eng 9(1):160–170Google Scholar
  43. 43.
    Mardanov A, Seyfried J, Fatikow S (1999) An automated assembly system for a microassembly station. Comput Ind 38(2):93–102CrossRefGoogle Scholar
  44. 44.
    Chang RJ, Lin CY, Lin PS (2011) Visual-based automation of peg-in-hole microassembly process. ASME J Manuf Sci Eng 133(4):1–12CrossRefGoogle Scholar
  45. 45.
    Estevez P, Khan S, Lambert P, Porta M, Polat I, Scherer C, Tichem M, Staufer U, Langen HH, Schmidt M (2010) A haptic tele-operated system for microassembly. Precis AssemTechnol Syst IFIP Adv Inf Commun Technol 315:13–20CrossRefGoogle Scholar
  46. 46.
    Ruggeri S, Fontana G, Pagano C, Fassi I, Legnani G (2012) Handling and manipulation of microcomponents: work-cell design and preliminary experiments. Precis Assem Technol Syst IFIP Adv Inf Comm Technol 371:65–72CrossRefGoogle Scholar
  47. 47.
    Gendreau D, Gauthier M et al (2010) Modular architecture of the microfactories for automatic micro-assembly. Robotics Comp Int Manuf 26(4):354–360CrossRefGoogle Scholar
  48. 48.
    Gendreau D, Rakotondrabe M, Lutz P (2012) Towards reconfigurable and modular microfactory based on the TRING-module stick–slip microrobot. 8th International Workshop on Microfactories, Tempere, Finland, June 18–20, Accessed on December 21, 2013,
  49. 49.
    Hollis R, Quaid A (1995) An architecture for agile assembly. Proceedings of the American Society of Precision Engineering, Austin, October 15–19, 1995Google Scholar
  50. 50.
    Cecil J, Huber J, Gobinath N, Jacquess J (2011) A virtual factory environment to support process design in micro assembly domains. Comp Aided Design Appl 8(1):119–127CrossRefGoogle Scholar
  51. 51.
    Saeedi E, Abbasi S, Böhringer KF, Parviz BA (2007) Molten-alloy driven self-assembly for nano and micro scale system integration. Fluid Dyn Mater Process 2(4):221–246Google Scholar
  52. 52.
    Bogue R (2008) Self-assembly: a review of recent developments. Assembly Automation 28(3):211–215CrossRefGoogle Scholar
  53. 53.
    Fonstad CG Jr, Zahn M (2005) Method and system for magnetically assisted statistical assembly of wafers. US Patent 6:888,178Google Scholar
  54. 54.
    Ramadan Q, Uk YS, Vaidyanathan K (2007) Large scale microcomponents assembly using an external magnetic array. Appl Phys Lett 90:172502–172503CrossRefGoogle Scholar
  55. 55.
    Rivero R, Shet S, Booty M, Fiory A, Ravindra N (2008) Modeling of magnetic-field-assisted assembly of semiconductor devices. J Electr Mater 37:374–378CrossRefGoogle Scholar
  56. 56.
    Shetye S, Eskinazi I, Arnold D (2010) Magnetic self-assembly of millimeter-scale components with angular orientation. J Microelectromechanical Syst 19:599–609CrossRefGoogle Scholar
  57. 57.
    Shetye SB, Eskinazi I, Arnold DP (2008) Self-assembly of millimeter-scale components using integrated micromagnets. IEEE Trans Magn 44:4293–4296CrossRefGoogle Scholar
  58. 58.
    Grzybowski BA, Stone HA, Whitesides GM (2002) Dynamics of self-assembly of magnetized disks rotating at the liquid-air interface. Proc Natl Acad Sci U S A 99:4147–4151CrossRefGoogle Scholar
  59. 59.
    Iwase E, Shimoyama I (2005) Multi-step sequential batch self-assembly of three-dimensional micro-structures using magnetic field. Proceedings of 18th IEEE International Conference on MEMS 2005, Miami, FL, USA, pp. 588–591Google Scholar
  60. 60.
    Wang DA, Ko HH (2009) Magnetic-assisted self-assembly of rectangular-shaped parts. Sens Actuat A: Phys 151:195–202CrossRefGoogle Scholar
  61. 61.
    Morris CJ, Isaacson B, Grapes D, Dubey M (2011) Self-assembly of microscale parts through magnetic and capillary interactions. Micromachines 2(1):69–81CrossRefGoogle Scholar
  62. 62.
    Scott KL, Hirano T, Yang H, Singh H, Howe RT, Niknejad AM (2004) High-performance inductors using capillary based fluidic self-assembly. J Microelectromechanical Syst 13:300–309CrossRefGoogle Scholar
  63. 63.
    Srinivasan U, Liepmann D, Howe RT (2001) Microstructure to substrate self-assembly using capillary forces. J Microelectromechan Syst 10:17–24CrossRefGoogle Scholar
  64. 64.
    Srinivasan U, Helmbrecht M, Rembe C, Muller R, Howe R (2002) Fluidic self-assembly of micromirrors onto microactuators using capillary forces. IEEE J Sel Topics Quantum Electr 8:4–11CrossRefGoogle Scholar
  65. 65.
    Xiong X, Hanein Y, Fang J, Wang Y, Schwartz DT, Bohringer KF (2003) Controlled multibatch self-assembly of microdevices. J Microlectromechanical Syst 12(2):117–127CrossRefGoogle Scholar
  66. 66.
    Clark TD, Ferrigno R, Tien J, Paul KE, Whitesides GM (2002) Template-directed self-assembly of 10-μm-sized hexagonal plates. J Am Chem Soc 124:5419–5426CrossRefGoogle Scholar
  67. 67.
    Clark TD, Tien J, Duffy DC, Paul KE, Whitesides GM (2010) Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays. J Am Chem Soc 123:7677–7682CrossRefGoogle Scholar
  68. 68.
    Morris CJ, Ho H, Parviz BA (2006) Liquid polymer deposition on free-standing microfabricated parts for self-assembly. J Microelectromechanical Syst 15:1795CrossRefGoogle Scholar
  69. 69.
    Zheng W, Jacobs HO (2004) Shape-and-solder-directed self-assembly to package semiconductor device segments. Appl Phys Lett 85:3635–3637CrossRefGoogle Scholar
  70. 70.
    Burgard M, Schläfli N, Mai U (2012) Processes for the self-assembly of micro parts. Precision Assem Technol Syst IFIP Adv Inf Comm Technol 371:36–41CrossRefGoogle Scholar
  71. 71.
    Tien J, Terfort A, Whitesides GM (1997) Micro-fabrication through electrostatic self-assembly. Langmuir 13(20):5349–5355CrossRefGoogle Scholar
  72. 72.
    Harsh KF, Bright VM, Lee YC (1999) Solder self-assembly for three-dimensional microelectromechanical systems. Sensors Actuators 77:237–244CrossRefGoogle Scholar
  73. 73.
    Syms RRA (1998) Rotational self-assembly of complex microstructures by the surface tension of glass. Sensors Actuators A 65:238–243CrossRefGoogle Scholar
  74. 74.
    Xi J, Schmidt JJ, Montemagno CD (2005) Self-assembled microdevices driven by muscle. Nat Mater 4:180–184CrossRefGoogle Scholar
  75. 75.
    Sariola V, Jääskeläinen M, Zhou Q (2010) Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans Robot 26(6):965–977CrossRefGoogle Scholar
  76. 76.
    Liimatainen V, Zhou Q (2011) Fusion of robotic microassembly and self-assembly. Proceedings of the Microassembly Workshop at IROS 2011, San Francisco, CA.Google Scholar
  77. 77.
    Gobinath N, Cecil J, Son T (2006) A collaborative system to realize virtual enterprises using 3APL, Agent Languages and Technologies IV. Lect Notes Artificial Intell 4327(2006):191–206Google Scholar
  78. 78.
    GENI project (2014). The GENI project, (accessed June 2014).
  79. 79.
    Murthy R, Stephanou HE, Popa DO (2013) AFAM: an articulated four axes microrobot for nanoscale applications. Autom Sci Eng, IEEE Trans 10(2):276–284CrossRefGoogle Scholar
  80. 80.
    Cecil J, Gobinath N (2010) A cyber physical test bed for collaborative micro assembly engineering. Proceedings of the 2010 Collaborative Technologies and Systems (CTS) conference, pp. 430–439, Chicago, May 17–21, 2010Google Scholar
  81. 81.
    Ye X, Zhang Y, Ru C, Luo J, Xie S, Sun Y (2013) Automated pick-place of silicon nanowires. AutomSci Eng, IEEE Trans 10(3):554–561CrossRefGoogle Scholar
  82. 82.
    Cecil J, Jones J (2014) VREM: an advanced virtual environment for micro assembly. Int J Adv Manuf Technol 72(1–4):47–56CrossRefGoogle Scholar
  83. 83.
    Liu J, Gong Z, Tang K, Lu Z, Ru C, Luo J, Sun Y (2014) Locating end-effector tips in robotic micromanipulation. Robotics, IEEE Trans 30(1):125–130CrossRefGoogle Scholar
  84. 84.
    Cecil J, Gunda R, Calyam P, Seetharam S (2013) A next generation collaborative framework for advanced manufacturing. In Automation Science and Engineering (CASE), 2013 I.E. International Conference on, pp. 128–132, Madison, Aug. 17–20, 2013Google Scholar
  85. 85.

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • J. Cecil
    • 1
    Email author
  • M. B. Bharathi Raj Kumar
    • 1
  • Yajun Lu
    • 1
  • Vinod Basallali
    • 2
  1. 1.School of Industrial Engineering and Management, Center for Information Centric Engineering (CICE)Oklahoma State UniversityStillwaterUSA
  2. 2.School of Industrial Engineering and ManagementOklahoma State UniversityStillwaterUSA

Personalised recommendations