Advertisement

Pitting corrosion susceptibility of friction stir welded lean duplex stainless steel joints

  • M. Atapour
  • H. Sarlak
  • M. Esmailzadeh
ORIGINAL ARTICLE

Abstract

The effect of friction stir welding (FSW) on the pitting corrosion resistance of a lean duplex stainless steel was investigated in chloride-containing and chloride-free electrolytes. FSW was carried out by employing a constant rotation speed of 800 rpm at the welding speeds of 50, 100, and 150 mm/min using WC-based tool. Cyclic polarization results showed the same corrosion resistance of the base metal and welded joints in 0.1 M H2SO4. The optical microscopy observations after cyclic polarization tests revealed that no signs of pitting corrosion were evident for the base metal and different FS welds in chloride-free 0.1 M H2SO4 solution. In contrast, a wide positive hysteresis loop indicative of pitting corrosion susceptibility was displayed for the base metal and FS welds in 0.1 M H2SO4 + 0.1 M NaCl solution. The optical micrographs of pitting corrosion in the base metal and various FS welds demonstrated that the size of pits was decreased and the number of pits was increased after FSW. It was also found that increasing the welding speed led to an increase in the number of pits and a decrease in the size of pits. In other words, the resistance to pit growth was improved by decreasing the heat input during FSW. These results were interpreted with respect to the noticeable grain refinement that occurred during FSW.

Keywords

Friction stir welding (FSW) Duplex stainless steel Pitting Cyclic potentiodynamic polarization Microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas WM, Nicholas ED, Needham JC, Church MG, Templesmith P, Dawes CJ (1991) Friction stir welding. In: International Patent Application no. PCT/GB92102203Google Scholar
  2. 2.
    Dehghani K, Ghorbani R, Soltanipoor A (2014) Microstructural evolution and mechanical properties during the friction stir welding of 7075-O aluminum alloy. Int J Adv Manuf Technol:1–9Google Scholar
  3. 3.
    Çam G, Mistikoglu S (2014) Recent developments in friction stir welding of Al-alloys. J Materi Eng Perform 23(6):1936–1953. doi: 10.1007/s11665-014-0968-x CrossRefGoogle Scholar
  4. 4.
    Cui L, Fujii H, Tsuji N, Nogi K (2007) Friction stir welding of a high carbon steel. Scr Mater 56(7):637–640CrossRefGoogle Scholar
  5. 5.
    Matsushita M, Kitani Y, Ikeda R, Oi K, Fujii H (2013) Development of friction stir welding of high strength steel sheet. In: Fujii H (ed) Proceedings of the 1st International Joint Symposium on Joining and Welding. Woodhead, pp 87–93. doi:  http://dx.doi.org/10.1533/978-1-78242-164-1.87
  6. 6.
    Lakshminarayanan A, Balasubramanian V (2012) Sensitization resistance of friction stir welded AISI 409 M grade ferritic stainless steel joints. Int J Adv Manuf Technol 59(9–12):961–967CrossRefGoogle Scholar
  7. 7.
    Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev 56(1):1–48. doi: 10.1179/095066010X12777205875750 CrossRefGoogle Scholar
  8. 8.
    Lippold JC, Rodelas JM, Rule JR (2013) Friction stir processing of Ni-base alloys. In: Fujii H (ed) Proceedings of the 1st International Joint Symposium on Joining and Welding. Woodhead, pp 369–376. doi:http://dx.doi.org/ 10.1533/978-1-78242-164-1.369
  9. 9.
    Ureña A, Otero E, Utrilla MV, Múnez CJ (2007) Weldability of a 2205 duplex stainless steel using plasma arc welding. J Mater Process Technol 182(1–3):624–631. doi: 10.1016/j.jmatprotec.2006.08.030 CrossRefGoogle Scholar
  10. 10.
    Lippold JC, Kotecki DJ (2005) Welding metallurgy and weldability of stainless steels. WileyGoogle Scholar
  11. 11.
    Sato Y, Nelson T, Sterling C, Steel R, Pettersson C-O (2005) Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel. Mater Sci Eng A 397(1):376–384CrossRefGoogle Scholar
  12. 12.
    Cam G, Erim S, Yeni C, Kocak M (1999) Determination of mechanical and fracture properties of laser beam welded steel joints. Welding J-New York 78:193-sGoogle Scholar
  13. 13.
    Çam G, Yeni Ç, Erim S, Ventzke V, Koçak M (1998) Investigation into properties of laser welded similar and dissimilar steel joints. Sci Technol Weld Join 3(4):177–189. doi: 10.1179/stw.1998.3.4.177 CrossRefGoogle Scholar
  14. 14.
    Saeid T, Abdollah-Zadeh A, Assadi H, Ghaini FM (2008) Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel. Mater Sci Eng A 496(1):262–268CrossRefGoogle Scholar
  15. 15.
    Okamoto K, Hirano S, Inagaki M, Park S, Sato Y, Kokawa H, Nelson T, Sorensen C (2003) Metallurgical and mechanical properties of friction stir welded stainless steels. In: Proc Fourth Int Sym Friction Stir Welding, pp 14–16Google Scholar
  16. 16.
    Santos TF, Marinho RR, Paes MT, Ramirez AJ (2013) Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds. Rem: Revista Escola de Minas 66(2):187–191Google Scholar
  17. 17.
    Steel R, Sterling C (2004) Friction stir welding of 2205 duplex stainless and 3Cr12 steels. In: Proc. 14th Int. Conf. on ‘Offshore and polar engineering’. Toulon, France, pp 67–73Google Scholar
  18. 18.
    Esmailzadeh M, Shamanian M, Kermanpur A, Saeid T (2013) Microstructure and mechanical properties of friction stir welded lean duplex stainless steel. Mater Sci Eng A 561:486–491CrossRefGoogle Scholar
  19. 19.
    Santos T, Ramirez A, Queiroz R (2011) Correlating microstructure and performance of UNS S32750 and S32760 superduplex stainless steels friction stir welds. Proc twenty-first Int Offshore Polar Eng Conf, Maui:534–540Google Scholar
  20. 20.
    Sarlak H, Atapour M, Esmailzadeh M (2015) Corrosion behavior of friction stir welded lean duplex stainless steel. Mater Des 66:209–216CrossRefGoogle Scholar
  21. 21.
    Siow K, Song T, Qiu J (2001) Pitting corrosion of duplex stainless steels. Anti-Corrosion Methods Materials 48(1):31–37CrossRefGoogle Scholar
  22. 22.
    Turnbull A, Francis PE, Ryan MP, Orkney LP, Griffiths AJ, Hawkins B (2002) A novel approach to characterizing the corrosion resistance of super duplex stainless steel welds. Corrosion 58(12):1039–1048. doi: 10.5006/1.3280793 CrossRefGoogle Scholar
  23. 23.
    Kang D, Lee H (2013) Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds. Corros Sci 74:396–407CrossRefGoogle Scholar
  24. 24.
    Garfias-Mesias LF, Sykes JM, Tuck CDS (1996) The effect of phase compositions on the pitting corrosion of 25 Cr duplex stainless steel in chloride solutions. Corros Sci 38(8):1319–1330. doi: 10.1016/0010-938X(96)00022-4 CrossRefGoogle Scholar
  25. 25.
    Tan H, Wang Z, Jiang Y, Yang Y, Deng B, Song H, Li J (2012) Influence of welding thermal cycles on microstructure and pitting corrosion resistance of 2304 duplex stainless steels. Corros Sci 55:368–377CrossRefGoogle Scholar
  26. 26.
    Cervo R, Ferro P, Tiziani A, Zucchi F (2010) Annealing temperature effects on superduplex stainless steel UNS S32750 welded joints. II: pitting corrosion resistance evaluation. J Mater Sci 45(16):4378–4389. doi: 10.1007/s10853-010-4311-0 CrossRefGoogle Scholar
  27. 27.
    Symniotis E (1990) Galvanic effects on the active dissolution of duplex stainless steels. Corrosion 46(1):2–12. doi: 10.5006/1.3585062 CrossRefGoogle Scholar
  28. 28.
    Aldykiewicz AJ Jr, Isaacs HS (1998) Dissolution characteristics of duplex stainless steels in acidic environments. Corros Sci 40(10):1627–1646. doi: 10.1016/S0010-938X(98)00053-5 CrossRefGoogle Scholar
  29. 29.
    Potgieter J, Olubambi P, Cornish L, Machio C, Sherif E-SM (2008) Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels. Corros Sci 50(9):2572–2579CrossRefGoogle Scholar
  30. 30.
    Femenia M, Pan J, Leygraf C, Luukkonen P (2001) In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunnelling microscopy. Corros Sci 43(10):1939–1951CrossRefGoogle Scholar
  31. 31.
    Olsson C-O, Landolt D (2003) Passive films on stainless steels—chemistry, structure and growth. Electrochim Acta 48(9):1093–1104CrossRefGoogle Scholar
  32. 32.
    Tavara S, Chapetti M, Otegui J, Manfredi C (2001) Influence of nickel on the susceptibility to corrosion fatigue of duplex stainless steel welds. Int J Fatigue 23(7):619–626CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Wang Z, Jiang Y, Tan H, Han D, Guo Y, Li J (2012) Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds. Corros Sci 62:42–50CrossRefGoogle Scholar
  34. 34.
    Yang Y, Yan B, Li J, Wang J (2011) The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel. Corros Sci 53(11):3756–3763CrossRefGoogle Scholar
  35. 35.
    Aquino J, Della Rovere C, Kuri S (2008) Localized corrosion susceptibility of supermartensitic stainless steel in welded joints. Corrosion 64(1):35–39CrossRefGoogle Scholar
  36. 36.
    Zhang L, Jiang Y, Deng B, Zhang W, Xu J, Li J (2009) Effect of aging on the corrosion resistance of 2101 lean duplex stainless steel. Mater Charact 60(12):1522–1528CrossRefGoogle Scholar
  37. 37.
    Chunchun X, Gang H (2004) Effect of deformation-induced martensite on the pit propagation behavior of 304 stainless steel. Anti-Corrosion Methods Materials 51(6):381–388CrossRefGoogle Scholar
  38. 38.
    Barbucci A, Delucchi M, Panizza M, Sacco M, Cerisola G (2001) Electrochemical and corrosion behaviour of cold rolled AISI 301 in 1 MH 2 SO 4. J Alloys Compd 317:607–611CrossRefGoogle Scholar
  39. 39.
    Moura V, Lima L, Pardal J, Kina A, Corte R, Tavares S (2008) Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803. Mater Charact 59(8):1127–1132CrossRefGoogle Scholar
  40. 40.
    Kutz M (2002) Handbook of materials selection. Wiley Online LibraryGoogle Scholar
  41. 41.
    Di Schino A, Kenny J (2002) Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels. J Mater Sci Lett 21(20):1631–1634CrossRefGoogle Scholar
  42. 42.
    Antony P, Raman RS, Kumar P, Raman R (2008) Corrosion of 2205 duplex stainless steel weldment in chloride medium containing sulfate-reducing bacteria. Metall Mat Trans A 39(11):2689–2697CrossRefGoogle Scholar
  43. 43.
    Reddy G, Rao K, Sekhar T (2008) Microstructure and pitting corrosion of similar and dissimilar stainless steel welds. Sci Technol Welding Joining 13(4):363–377CrossRefGoogle Scholar
  44. 44.
    Meng G, Wei L, Zhang T, Shao Y, Wang F, Dong C, Li X (2009) Effect of microcrystallization on pitting corrosion of pure aluminium. Corros Sci 51(9):2151–2157CrossRefGoogle Scholar
  45. 45.
    Hamada A, Karjalainen L, Somani M (2006) Electrochemical corrosion behaviour of a novel submicron-grained austenitic stainless steel in an acidic NaCl solution. Mater Sci Eng A 431(1):211–217CrossRefGoogle Scholar
  46. 46.
    Jinlong L, Hongyun L (2013) Comparison of corrosion properties of passive films formed on phase reversion induced nano/ultrafine-grained 321 stainless steel. Appl Surf Sci 280:124–131CrossRefGoogle Scholar
  47. 47.
    Wang X, Li D (2002) Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim Acta 47(24):3939–3947CrossRefGoogle Scholar
  48. 48.
    Liu L, Li Y, Wang F (2007) Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl. Electrochim Acta 52(25):7193–7202CrossRefGoogle Scholar
  49. 49.
    Eghlimi A, Shamanian M, Raeissi K (2014) Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process. Surf Coat Technol 244:45–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Materials Science and Engineering, School of EngineeringShiraz UniversityShirazIran

Personalised recommendations