The edge–torus tangency problem in multipoint machining of triangulated surface models

  • Ravinder Kumar Duvedi
  • Sanjeev Bedi
  • Ajay Batish
  • Stephen Mann
ORIGINAL ARTICLE

Abstract

This paper presents a method for computing the tangency between an edge and a torus. This tangency is used in positioning a toroidal tool on an edge that is part of a triangulated surface. This method is easier to implement and faster to execute than earlier solutions to this problem. The method was tested on a triangulated surface modeling a pyramid and on a triangulated tensor product Bézier patch.

Keywords

Tool positioning Cutter location Radiused end milling cutter NC machining Edge–torus tangency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedi S, Ismail F, Mahjoob MJ, Chen Y (1997) Toroidal versus ball nose and flat bottom end mills, vol 13, pp 326–32Google Scholar
  2. 2.
    Chuang CY, Chen CM, Yau HT (2002) A reverse engineering approach to generating interference-free tool paths in three-axis machining from scanned data of physical models. Int J Adv Manuf Technol 19:23–31CrossRefGoogle Scholar
  3. 3.
    Duvedi RK, Bedi S, Batish A, Mann S (2014) A multipoint method for 5-axis machining of triangulated surface models. Comput Aided Des 52:17–26CrossRefGoogle Scholar
  4. 4.
    Duvedi RK, Bedi S, Batish A, Mann S (2015) Numeric implementation of drop and tilt method of 5-axis tool positioning for machining of triangulated surfaces. Int J Adv Manuf Technol:1–14Google Scholar
  5. 5.
    Duvedi RK, Bedi S, Mann S (2015) A method for simplifying edge–torus tangency in drop-tilt method for 5-axis machining of triangulated surfaces. Int J Adv Manuf Technol. Submitted for publicationGoogle Scholar
  6. 6.
    Farin G (2002) Curves and Surfaces for CAGD, 5th edn. Morgan KaufmannGoogle Scholar
  7. 7.
    Gray P, Bedi S, Ismail F (2005) Arc-intersect method for 5-axis tool positioning. Comput Aided Des 37(7):663–74CrossRefGoogle Scholar
  8. 8.
    Gray P, Ismail F, Bedi S (2004) Graphics-assisted rolling ball method for 5-axis surface machining. Comput Aided Des 36(7):653–63CrossRefGoogle Scholar
  9. 9.
    Hwang JS, Chang TC (1998) Three-axis machining of compound surfaces using flat and filleted endmills. Comput Aided Des 30(8):641–647CrossRefMATHGoogle Scholar
  10. 10.
    Mann S, Bedi S, Israeli G, Zhou X(L) (2010) Machine models and tool motions for simulating five-axis machining. Comput Aided Des 42:231–237CrossRefGoogle Scholar
  11. 11.
    Patel K, Bolanos GS, Bassi R, Bedi S (2011) Optimal tool shape selection based on surface geometry for three-axis CNC machining. Int J Adv Manuf Technol 57:655–670CrossRefGoogle Scholar
  12. 12.
    Yau HT, Chuang CM, Lee YS (2004) Numerical control machining of triangulated sculptured surfaces in a stereo lithography format with a generalized cutter. Int J Prod Res 42(13):2573–98CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Ravinder Kumar Duvedi
    • 1
  • Sanjeev Bedi
    • 2
  • Ajay Batish
    • 1
  • Stephen Mann
    • 2
  1. 1.Thapar UniversityPatialaIndia
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations