Balancing the transverse cutting force during inclined milling and effect on tool wear: application to Ti6Al4V

  • K. Moussaoui
  • F. Monies
  • M. Mousseigne
  • P. Gilles
  • W. Rubio


The present article studies the effect on cutter wear of balancing transverse cutting forces during inclined milling applied to a titanium alloy (Ti6Al4V). Indeed, this method is advantageous as it helps reduce vibrations as also the amplitude of such forces thanks to balancing. These observations provide the means to enhance cutting conditions and thus boost productivity when roughing. The method was first validated on Ti6Al4V titanium alloy. A model was then proposed to estimate the maximum axial cutting force at angular positions 0 and p. A wear test was then conducted and notching, flaking and flank types of wear were observed as being most representative. Roughness measurements were made throughout the wear test as also measurements of cutting forces with a new cutter and the worn cutter to provide a comparison. The cutting forces remained acceptable and the roughness values measured remained below the criteria generally retained for roughing. The improvements obtained in terms of extended tool life when using this method were extremely significant since under the same cutting conditions flat milling gave a lifetime of 2.03 min while when machining with balancing of the transverse cutting forces this was extended to 23.6 min.


Balancing of the transversal cutting force Tool wear Inclined milling Ti6Al4V 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schulz H (2004) Proceeding of the international conference on high speed machining, Nanjing, China, pp 1–20Google Scholar
  2. 2.
    Brinksmeier E, Walter A, Reucher G, Solter J (2008) Int J Mach Mach Mater 4(4):419. doi: 10.1504/IJMMM.2008.023723 Google Scholar
  3. 3.
    Rahman M, Wang ZG, Wong YS (2006) JSME Int J Ser C Mech Syst Mach Elem Manuf 49(1):11. doi: 10.1299/jsmec.49.11 CrossRefGoogle Scholar
  4. 4.
    Rauch M, Hascoet JY (2012) Int J Adv Manuf Technol 59(1–4):47. doi: 10.1007/s00170-011-3498-9 CrossRefGoogle Scholar
  5. 5.
    Danis I, Wojtowicz N, Monies F, Lagarrigue P (2014) International Journal of Mechatronics and Manufacturing Systems 7(2):141. doi: 10.1504/IJMMS.2014.064750 CrossRefGoogle Scholar
  6. 6.
    Gilles P, Monies F, Rubio W (2007) Int J Mach Tools Manuf 47 (15):2263. doi: 10.1016/j.ijmachtools.2007.06.003 CrossRefGoogle Scholar
  7. 7.
    Gilles P (2008) Positionnement d’outil torique pour l’usinage, de surfaces gauches en fraisage 5-axes avec équilibrage de l’effort de coupe transversale. Ph.D. thesis, Université de Toulouse, Université Toulouse III-Paul SabatierGoogle Scholar
  8. 8.
    Gilles P, Cohen G, Monies F, Rubio W (2013) Int J Adv Manuf Technol 66(5–8):965. doi: 10.1007/s00170-012-4381-z CrossRefGoogle Scholar
  9. 9.
    Cheng K (2008) Machining dynamics: Fundamentals applications and practices. SpringerGoogle Scholar
  10. 10.
    Ezugwu E (2005) Int J Mach Tools Manuf 45(12–13):1353. doi: 10.1016/j.ijmachtools.2005.02.003 CrossRefGoogle Scholar
  11. 11.
    Konig W (1978) Proceedings of 47th meeting of AGARD structural and materials panel, Florence, Italy pp. 1.1–1.10Google Scholar
  12. 12.
    Sun J, Guo Y (2008) Int J Mach Tools Manuf 48(12–13):1486.CrossRefGoogle Scholar
  13. 13.
    Ezugwu EO, Wang ZM (1997) J Mater Process Technol 68(3):262. doi: 10.1016/S0924-0136(96)00030-1 CrossRefGoogle Scholar
  14. 14.
    Elmagrabi N, Hassan CC, Jaharah A, Shuaeib F (2008) Eur J Sci Res 22(2):153Google Scholar
  15. 15.
    Cohen G, Segonds S (2008) Int J Mach Mach Mater 4(4). doi: 10.1504/IJMMM.2008.023722
  16. 16.
    Wagner V, Duc E (2014) Int J Adv Manuf Technol 75(9–12):1473. doi: 10.1007/s00170-014-6217-5 CrossRefGoogle Scholar
  17. 17.
    Nouari M, Calamaz M, Girot F (2008) Comptes Rendus Mécanique 336(10):772. doi: 10.1016/j.crme.2008.07.007 CrossRefGoogle Scholar
  18. 18.
    Nabhani F (2001) Robot Comput Integr Manuf 17(1–2):99. doi: 10.1016/S0736-5845(00)00042-9 CrossRefGoogle Scholar
  19. 19.
    Su Y, He N, Li L, Li X (2006) Wear 261(7–8):760. doi: 10.1016/j.wear.2006.01.013 CrossRefGoogle Scholar
  20. 20.
    Che-Haron CH (2001) J Mater Process Technol 118(1–3):231. doi: 10.1016/S0924-0136(01)00926-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • K. Moussaoui
    • 1
  • F. Monies
    • 1
  • M. Mousseigne
    • 1
  • P. Gilles
    • 1
  • W. Rubio
    • 1
  1. 1.Institut Clément AderUniversité Toulouse 3 - Paul SabatierToulouseFrance

Personalised recommendations