Tangential turning of Incoloy alloy 925 using abrasive water jet technology

  • Ján Cárach
  • Sergej Hloch
  • Petr Hlaváček
  • Jiří Ščučka
  • Petr Martinec
  • Jana Petrů
  • Tomáš Zlámal
  • Michal Zeleňák
  • Peter Monka
  • Dominika Lehocká
  • Jolanta Krolczyk
ORIGINAL ARTICLE

Abstract

The paper deals with tangential abrasive water jet (AWJ) turning of Incoloy alloy 925. The aim of the experiment was to analyze the impact of the AWJ traverse speed (1.5–9 mm/min) on the surface quality in terms of micro-structure formed on the created surface. The water pressure was set to 400 MPa and the spindle revolution to 34 rpm. Australian garnet (MESH 80) was used as an abrasive component. The surfaces were visualized and qualitatively described using a laser confocal microscope. Basic roughness parameters of the surfaces (Ra, Rq, Rz) were measured using an optical profilometer. The presented experimental results demonstrate that the technology of abrasive water jet turning is an appropriate tool for rough machining of difficult-to-machine materials.

Keywords

Incoloy alloy 925 Abrasive water jet turning Traverse speed Surface roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Courbon C et al (2011) Investigation of machining performance in high pressure jet assisted turning of Inconel 718: a numerical model. J Mater Process Technol 211:1834–1851CrossRefGoogle Scholar
  2. 2.
    Sitek L et al (2005) Shaping of rock specimens for testing of uniaxial tensile strength by high speed abrasive water jet: first experience. In: Konečný P (ed) Eurock 2005—impact of human activity on the geological environment. Balkema, London, pp 545–549Google Scholar
  3. 3.
    Axinte AD et al (2009) Abrasive waterjet turning—an efficient method to profile and dress grinding wheels. Int J Mach Tool Manuf 49(3–4):351–356CrossRefGoogle Scholar
  4. 4.
    Zhong WZ, Han ZZ (2006) Turning of glass with abrasive waterjet. Mater Manuf Process 17:339–349Google Scholar
  5. 5.
    Li W et al (2013) Investigation into the radial-mode abrasive waterjet turning process on high tensile steels. Int J Mech Sci 77:365–376CrossRefGoogle Scholar
  6. 6.
    Manu R, Babu RN (2009) An erosion-based model for abrasive waterjet turning of ductile materials. Wear 266:1091–1097. doi:10.1016/j.wear.2009.02.008 CrossRefGoogle Scholar
  7. 7.
    Uhlmann E et al (2012) Abrasive waterjet turning of high performance materials. Procedia CIRP 1:409–413. doi:10.1016/j.procir.2012.04.073 CrossRefGoogle Scholar
  8. 8.
    Sitek L (2009) Turning by high-speed abrasive water jet—our experiences (in Czech). In: Sitek (ed) Proceedings of the Int. Conf. Vodní paprsek/Water Jet 2009, ÚGN, pp. 160–169, ISBN 978-80-86407-81-4Google Scholar
  9. 9.
    Habak M, Lebrun JL (2011) An experimental study of the effect of high-pressure water jet assisted turning (HPWJAT) on the surface integrity. Int J Mach Tools Manuf 51:661–669CrossRefGoogle Scholar
  10. 10.
    Incoloy alloy 925 (2004) Special metals. Publication number SMC 070, Special Metals Corporation. Available in FTP: http://www.specialmetals.com/documents/Incoloy%20alloy%20925.pdf. Accessed 20 Dec 2013
  11. 11.
    Motorcu AR et al (2013) Evaluation of tool life-tool wear in milling of Inconel 718 superalloy and the investigation of effects of cutting parameters on surface roughness with Taguchi method. Techn Gaz 20:765–774, ISSN 1330–3651Google Scholar
  12. 12.
    Sujaya C et al (2012) Hardness and electrochemical behavior of ceramics coatings on Inconel. J Electrochem Sci Eng 2(1):19–31, ISSN 1847–9286Google Scholar
  13. 13.
    Kramar D et al (2013) The machinability of nickel-based alloys in high-pressure jet assisted (HPJA) turning. Metalurgija 52:512–514, ISSN 0543–5846Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Ján Cárach
    • 1
  • Sergej Hloch
    • 1
  • Petr Hlaváček
    • 2
  • Jiří Ščučka
    • 2
  • Petr Martinec
    • 2
  • Jana Petrů
    • 3
  • Tomáš Zlámal
    • 3
  • Michal Zeleňák
    • 2
  • Peter Monka
    • 1
  • Dominika Lehocká
    • 1
  • Jolanta Krolczyk
    • 4
  1. 1.Faculty of Manufacturing Technologies, TUKE with a seat in PrešovPrešovSlovak Republic
  2. 2.Institute of Geonics of the Czech Academy of SciencesOstravaCzech Republic
  3. 3.Faculty of Mechanical EngineeringTechnical University in OstravaOstravaCzech Republic
  4. 4.Faculty of Production Engineering and LogisticsOpole University of TechnologyOpolePoland

Personalised recommendations