Phase and stress evolution in diamond microparticles during diamond-coated wire sawing of Si ingots

  • Junting Yang
  • Sriya Banerjee
  • Junnan Wu
  • Yoon Myung
  • Omid Rezvanian
  • Parag Banerjee


Diamond microparticles undergo changes to their structure and stress state during diamond-coated wire sawing of Si ingots. This phenomenon is revealed using confocal, micro-Raman spectroscopy of diamond microparticles attached to wires which perform the sawing action. Post-wafer-sawed diamonds show the appearance of D (1350 cm−1) and G (1597 cm−1) bands of graphite besides the characteristic diamond T2g band at 1332 cm−1. The graphitic phase extends inside the diamond to a depth of ~ 14 μm. The ratio of the intensities of D and G bands allows an estimate of the graphitic crystallite size. The grain size varies from 10 nm close to the surface to 53 nm near the graphite/diamond interface. On other diamonds, blue shifts in the T2g peak position are observed indicating the presence of compressive stress. The peak shifts (up to 3.6 cm−1) are anisotropic, i.e., along the direction of wire cutting, and are estimated to be 2.9 GPa. It is proposed that the cumulative effect of compressive stresses over multiple cutting events during the sawing process can lead to local graphitization of diamond particles, thus contributing to loss in cutting efficiency.


Diamond Graphitization Diamond-coated wire sawing Raman spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bye J, Norheim L, Holme B, Nielsen O, Steinsvik S, Jensen S, Fragiacomo G, Lombardi I (2011) Industrialised diamond wire wafer slicing for high efficiency solar cells. In: Proceedings of the 26th European photovoltaic solar energy conference, WIP-Renewable Energies, Germany, pp 956–960Google Scholar
  2. 2.
    Gogotsi Y, Baek C, Kirscht F (1999) Raman microspectroscopy study of processing-induced phase transformations and residual stress in silicon. Semicond Sci Technol 14(10):936–944. doi: 10.1088/0268-1242/14/10/310 CrossRefGoogle Scholar
  3. 3.
    Gogotsi Y, Zhou GH, Ku SS, Cetinkunt S (2001) Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon. Semicond Sci Technol 16(5):345–352. doi: 10.1088/0268-1242/16/5/311 CrossRefGoogle Scholar
  4. 4.
    Hao W, Melkote SN (2012) Study of ductile-to-brittle transition in single grit diamond scribing of silicon: application to wire sawing of silicon wafers. J Eng Mater Technol 134(4):041011. doi: 10.1115/1.4006177 CrossRefGoogle Scholar
  5. 5.
    Li XP, He T, Rahman M (2005) Tool wear characteristics and their effects on nanoscale ductile mode cutting of silicon wafer. Wear 259:1207–1214. doi: 10.1016/j.wear.2005.12.020 CrossRefGoogle Scholar
  6. 6.
    Arefin S, Li XP, Cai MB, Rahman M, Liu K, Tay A (2007) The effect of the cutting edge radius on a machined surface in the nanoscale ductile mode cutting of silicon wafer. Proc Inst Mech Eng B J Eng Manuf 221(2):213–220. doi: 10.1243/09544054jem568 CrossRefGoogle Scholar
  7. 7.
    Arefin S, Li XP, Rahman M, Liu K (2007) The upper bound of tool edge radius for nanoscale ductile mode cutting of silicon wafer. Int J Adv Manuf Technol 31(7–8):655–662. doi: 10.1007/s00170-005-0245-0 Google Scholar
  8. 8.
    Durazo-Cardenas I, Shore P, Luo X, Jacklin T, Impey SA, Cox A (2007) 3D characterisation of tool wear whilst diamond turning silicon. Wear 262(3–4):340–349. doi: 10.1016/j.wear.2006.05.022 CrossRefGoogle Scholar
  9. 9.
    Jasinevicius RG, Duduch JG, Montanari L, Pizani PS (2012) Dependence of brittle-to-ductile transition on crystallographic direction in diamond turning of single-crystal silicon. Proc Inst Mech Eng B J Eng Manuf 226(B3):445–458. doi: 10.1177/0954405411421108 CrossRefGoogle Scholar
  10. 10.
    Cai MB, Li XP, Rahman A (2007) Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation. J Mater Process Technol 192:607–612. doi: 10.1016/j.jmatprotec.2007.04.028 CrossRefGoogle Scholar
  11. 11.
    Sopori B, Devayajanam S, Shet S, Guhabiswas D, Basnyat P, Moutinho H, Gedvilas L, Jones K, Binns J, Appel J (2013) Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing. Paper presented at the 2013 I.E. 39th photovoltaic specialists conference. IEEE, New York.  10.1109/pvsc.2013.6744298
  12. 12.
    Holt A, Thogersen A, Rohr C, Bye J, Helgesen G, Nordseth O, Jensen SA, Norheim L, Nielsen O (2010) Surface structure of mono-crystalline silicon wafers produced by diamond wire sawing and by standard slurry sawing before and after etching in alkaline solutions. Paper presented at the 2010 35th IEEE photovoltaic specialists conference (PVSC). IEEE, New York.  10.1109/PVSC.2010.5614103
  13. 13.
    Hongchen M, Lang Z (2014) Mechanical behavior of diamond-sawn multi-crystalline silicon wafers and its improvement. Silicon 6(2):129–135. doi: 10.1007/s12633-013-9170-2 CrossRefGoogle Scholar
  14. 14.
    Lewis IR, Edwards HGM (2001) Handbook of Raman spectroscopy: from the research laboratory to the process line. Practical spectroscopy, vol 28. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Zhang Y, Tani Y, Murata J, Hashizume T (2014) Development of partially Ni-coated diamond abrasives for electroplated tools. Trans JSME 80:SMM0111. doi:  10.1299/transjsme.2014smm0111
  16. 16.
    Wang Y, Alsmeyer DC, Mccreery RL (1990) Raman-spectroscopy of carbon materials - structural basis of observed spectra. Chem Mater 2(5):557–563. doi: 10.1021/Cm00011a018 CrossRefGoogle Scholar
  17. 17.
    Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R 37(4–6):129–281. doi: 10.1016/S0927-796x(02)00005-0 CrossRefGoogle Scholar
  18. 18.
    Solin S, Ramdas A (1970) Raman spectrum of diamond. Phys Rev B 1(4):1687–1698. doi: 10.1103/PhysRevB.1.1687 CrossRefGoogle Scholar
  19. 19.
    McCauley TS, Vohra YK (1994) Defect center in diamond thin films observed by micro-Raman and photoluminescence studies. Phys Rev B 49(7):5046–5049. doi: 10.1103/Physrevb.49.5046 CrossRefGoogle Scholar
  20. 20.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130. doi: 10.1063/1.1674108 CrossRefGoogle Scholar
  21. 21.
    Matthews MJ, Pimenta MA, Dresselhaus G, Dresselhaus MS, Endo M (1999) Origin of dispersive effects of the Raman D band in carbon materials. Phys Rev B 59(10):R6585–R6588. doi: 10.1103/Physrevb.59.R6585 CrossRefGoogle Scholar
  22. 22.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291. doi: 10.1039/B613962k CrossRefGoogle Scholar
  23. 23.
    Cancado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11(8):3190–3196. doi: 10.1021/Nl201432g CrossRefGoogle Scholar
  24. 24.
    Vidano RP, Fischbach DB, Willis LJ, Loehr TM (1981) Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun 39(2):341–344. doi: 10.1016/0038-1098(81)90686-4 CrossRefGoogle Scholar
  25. 25.
    Sharma SK, Mao H, Bell P, Xu J (1985) Measurement of stress in diamond anvils with micro-Raman spectroscopy. J Raman Spectrosc 16(5):350–352. doi: 10.1002/Jrs.1250160513 CrossRefGoogle Scholar
  26. 26.
    Huong PV (1991) Structural studies of diamond films and ultrahard materials by Raman and micro-Raman spectroscopies. Diam Relat Mater 1(1):33–41. doi: 10.1016/0925-9635(91)90009-Y CrossRefGoogle Scholar
  27. 27.
    Vohra YK, Mccauley TS (1994) Metastable phases of carbon during fracture of diamond under ultrahigh compressive stresses. Diam Relat Mater 3(8):1087–1090. doi: 10.1016/0925-9635(94)90097-3 CrossRefGoogle Scholar
  28. 28.
    Hanfland M, Beister H, Syassen K (1989) Graphite under pressure: equation of state and first-order Raman modes. Phys Rev B 39(17):12598–12603. doi: 10.1103/PhysRevB.39.12598 CrossRefGoogle Scholar
  29. 29.
    Pocsik I, Hundhausen M, Koos M, Ley L (1998) Origin of the D peak in the Raman spectrum of microcrystalline graphite. J Non-Cryst Solids 227:1083–1086. doi: 10.1016/S0022-3093(98)00349-4 CrossRefGoogle Scholar
  30. 30.
    Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos T Roy Soc A 362:2271–2288. doi: 10.1098/rsta.2004.1454 CrossRefGoogle Scholar
  31. 31.
    Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys Rev B 64(7):075414. doi: 10.1103/Physrevb.64.075414 CrossRefGoogle Scholar
  32. 32.
    Chu PK, Li LH (2006) Characterization of amorphous and nanocrystalline carbon films. Mater Chem Phys 96(2–3):253–277. doi: 10.1016/J.Matchemphys.2005.07.048 CrossRefGoogle Scholar
  33. 33.
    Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106. doi: 10.1063/1.2196057 CrossRefGoogle Scholar
  34. 34.
    Gogotsi YG, Kailer A, Nickel KG (1998) Pressure-induced phase transformations in diamond. J Appl Phys 84(3):1299–1304. doi: 10.1063/1.368198 CrossRefGoogle Scholar
  35. 35.
    Ji-an X, Ho-kwang M, Hemley RJ (2002) The gem anvil cell: high-pressure behaviour of diamond and related materials. J Phys Condens Matter 14(44):11549–11552. doi: 10.1088/0953-8984/14/44/514 CrossRefGoogle Scholar
  36. 36.
    Van Camp P, Van Doren V, Devreese J (1992) Theoretical study of diamond under strong anisotropic stresses. Solid State Commun 84(7):731–733. doi: 10.1016/0038-1098(92)90468-O CrossRefGoogle Scholar
  37. 37.
    Chacham H, Kleinman L (2000) Instabilities in diamond under high shear stress. Phys Rev Lett 85(23):4904–4907. doi: 10.1103/Physrevlett.85.4904 CrossRefGoogle Scholar
  38. 38.
    Mao H, Hemley R (1991) Optical transitions in diamond at ultrahigh pressures. Nature 351(6329):721–724. doi: 10.1038/351721a0 CrossRefGoogle Scholar
  39. 39.
    Pantea C, Qian J, Voronin GA, Zerda TW (2002) High pressure study of graphitization of diamond crystals. J Appl Phys 91(4):1957–1962. doi: 10.1063/1.1433181 CrossRefGoogle Scholar
  40. 40.
    Moller HJ (2004) Basic mechanisms and models of multi-wire sawing. Adv Eng Mater 6(7):501–513. doi: 10.1002/adem.200400578 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Junting Yang
    • 1
  • Sriya Banerjee
    • 1
  • Junnan Wu
    • 1
  • Yoon Myung
    • 1
  • Omid Rezvanian
    • 2
  • Parag Banerjee
    • 1
  1. 1.Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisUSA
  2. 2.SunEdisonSt PetersUSA

Personalised recommendations