Advertisement

An automated solution for fixtureless sheet metal forming

  • Balaji Ilangovan
  • Radmehr P. Monfared
  • Michael Jackson
Open Access
ORIGINAL ARTICLE

Abstract

Manual forming of sheet metal parts through traditional panel beating is a highly skilled profession used in many industries, particularly for sample manufacturing or repair and maintenance. However, this skill is becoming gradually isolated mainly due to the high cost and lack of expertise. Nonetheless, a cost-effective and flexible approach to forming sheet metal parts could significantly assist various industries by providing a method for fast prototyping sheet metal parts. The development of a new fixtureless sheet metal forming approach is discussed in this article. The proposed approach, named Mechatroforming®, consists of integrated mechanisms to manipulate sheet metal parts by a robotic arm under a controlled hammering tool. The method includes mechatronics-based monitoring and control systems for (near) real-time prediction and control of incremental deformations of parts. This article includes description of the proposed approach, the theoretical and modelling backgrounds used to predict the forming, skills learned from manual operations, and proposed automation system being built.

Keywords

Automation Flexible manufacturing Rapid prototyping Incremental forming 

References

  1. 1.
    Echrif SBM, Hrairi M (2011) Research and progress in incremental sheet forming processes. Mater Manuf Process 26(Issue 11):1404–1414, ISSN 1042–6914 CrossRefGoogle Scholar
  2. 2.
    Young D, Jeswiet J (2004) Wall thickness variations in single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 218(Issue 11):1453–1459, ISSN 0954–4054 CrossRefGoogle Scholar
  3. 3.
    Ben Hmida R, Thibaud S, Gilbin A, Richard F (2013) Influence of the initial grain size in single point incremental forming process for thin sheets metal and microparts: experimental investigations. Mater Des 45:155–165. doi: 10.1016/j.matdes.2012.08.077, ISSN 0261–3069 CrossRefGoogle Scholar
  4. 4.
    Yang ZR, Scherer D, Golle M, Hoffmann H (2011) Geometrical modeling of the sheet metal parts in the incremental shrinking process. Key Eng Mater 473:509–515. doi: 10.4028/www.scientific.net/KEM.473.509 CrossRefGoogle Scholar
  5. 5.
    Behera AK, Lauwers B, Duflou JR (2012) Advanced feature detection algorithms for incrementally formed sheet metal parts. Trans Nonferrous Metals Soc China 22(Issue 12):s315–s322. doi: 10.1016/S1003-6326(12)61725-7, ISSN 1003–6326 CrossRefGoogle Scholar
  6. 6.
    Silva M, Martins P (2013) Two-point incremental forming with partial die: theory and experimentation. J Mater Eng Perform 22(Issue 4):1018–1027CrossRefGoogle Scholar
  7. 7.
    RADU C (2012) Analysis of the correlation accuracy-distribution of residual stresses in the case of parts processed by SPIF. 14th Mathematical models and methods in modern science, July 1–3, PortugalGoogle Scholar
  8. 8.
    Chung W, Cho J, Belytschko T (1998) On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng Comput 15(Issue 6):750–776, ISSN 0264–4401 CrossRefzbMATHGoogle Scholar
  9. 9.
    Meier H, Buff B, Smukala V (2009) Robot-based incremental sheet metal forming—increasing the part accuracy in an automated, industrial forming cell. Key Eng Mater 410–411:159–166. doi: 10.4028/www.scientific.net/KEM.410-411.159 CrossRefGoogle Scholar
  10. 10.
    Dieless NC Forming. AMINO North America Corporation, United States. [viewed 20.02.2014]. Available from: http://www.aminonac.ca/technology_dnc.asp
  11. 11.
    Freeform Fabrication Technology. FORD, United States. [viewed 20.02.2014]. Available from: https://media.ford.com/content/fordmedia/fna/us/en/news/2013/07/03/ford-develops-advanced-technology-to-revolutionize-prototyping--.html
  12. 12.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(Issue 2):88–114, ISSN 0007–8506 CrossRefGoogle Scholar
  13. 13.
    Kreimeier D, Buff B, Magnus C, Smukala V, Zhu J (2011) Robot-based incremental sheet metal forming—increasing the geometrical accuracy of complex parts. Key Eng Mater 473:853–860CrossRefGoogle Scholar
  14. 14.
    Tanaka H, Naka S, Asakawa N (2012) Development of CAM system using linear servo motor to automate metal hammering—a study on forging-type rapid prototyping system. J Ref Int J Autom Technol 6(Issue 5):604–610Google Scholar
  15. 15.
    Schafer T, Schraft RD (2005) Incremental sheet metal forming by industrial robots. Rapid Prototyp J 11(Issue 5):278–286CrossRefGoogle Scholar
  16. 16.
    Opritescu D, Sachnik P, Yang Z, Golle R, Volk W, Hoffmann H, Schmiedl F, Ritter M, Gritzmann P (2012) Automated driving by standardizing and scaling the manufacturing strategy. Procedia CIRP 3:138–143CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Scherer D, Yang Z, Hoffmann H (2010) Driving—a flexible manufacturing method for individualized sheet metal products. Int J Mater Form 3:955–958. doi: 10.1007/s12289-010-0927-5, ISSN 1960–6206 CrossRefGoogle Scholar
  19. 19.
    Innovative Sheet Forming Processes. University of Cambridge, UK. http://www.lcmp.eng.cam.ac.uk/wellformed/innovative-sheet-forming-processes. Accessed 21 Feb 2014
  20. 20.
    Nave CR (2014) HyperPhysics (Mechanics). http://hyperphysics.phy-astr.gsu.edu/hbase/avari.html. Accessed 17 Apr 2014
  21. 21.
    Goldsmith W (2001) Impact: the theory and physical behaviour of colliding solids. Dover, Mineola. ISBN 9780486420042Google Scholar
  22. 22.
  23. 23.
    Vicon (2015). Vicon System. http://www.vicon.com/. Accessed 14 Apr 2015
  24. 24.
    Vicon (2015) Vicon T-Series. http://www.vicon.com/System/TSeries. Accessed 10 Apr 2015
  25. 25.
    Matlab (2015) Simulink. http://uk.mathworks.com/products/simulink/. Accessed 14 Apr 2015
  26. 26.
    Vicon (2015) Vicon active wand. http://www.vicon.com/System/Calibration. Accessed 10 Apr 2015

Copyright information

© The Author(s) 2015

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Balaji Ilangovan
    • 1
    • 2
  • Radmehr P. Monfared
    • 1
    • 2
  • Michael Jackson
    • 1
    • 2
  1. 1.EPSRC Centre for Innovative Manufacturing in Intelligent AutomationLoughborough UniversityLoughboroughUK
  2. 2.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations