Modelling the vibration-assisted drilling process: identification of influential phenomena

  • Mathieu Ladonne
  • Mehdi Cherif
  • Yann Landon
  • Jean-Yves K’Nevez
  • Olivier Cahuc
  • Côme de Castelbajac


The increasing part of composite materials in aeronautic multi-material structures highlights the need to develop adapted new manufacturing processes for assembly. Among the new drilling techniques, the vibration-assisted drilling (VAD) allows to improve reliability of drilling operations on multi-layer materials. Forced vibrations are added to conventional motions to create a discontinuous cutting. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of parameters requires first to model precisely the operation cutting and dynamics. Many works have highlighted the parameters range to obtain fragmented chip. The accuracy of current model is not sufficient to get the optimal parameters. The goal of this work is to identify the most influential phenomena generating error between model and test. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the modelling are analysed through comparison between measured and simulated down-hole surfaces. From experimental test results, the model is then completed in order to take into account dynamic phenomena that may explain behaviour differences between tests and simulations. The proposed model of cutting forces considering the dynamical behaviour of the machining system allows foreseeing the operating conditions which ensure good chips breaking. This work also presents the experimental method and the test results to validate the numerical simulator.


Vibration-assisted drilling Drilling Chip formation Machining dynamics Process modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benezech L, Landon Y, Rubio W (2011) Study of manufacturing defects and tool geometry optimisation for multi-material stack drilling. Adv Mater Res 423:1–11. doi: 10.4028/ CrossRefGoogle Scholar
  2. 2.
    Brinksmeier E, Janssen R (2002) Drilling of multi-layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminum alloys. CIRP Ann Manuf Technol 51:87–90. doi: 10.1016/S0007-8506(07)61472-3 CrossRefGoogle Scholar
  3. 3.
    Denkena B, Boehnke D, Dege JH (2008) Helical milling of CFRP—titanium layer compounds. CIRP J Manuf Sci Technol 1:64–69. doi: 10.1016/j.cirpj.2008.09.009 CrossRefGoogle Scholar
  4. 4.
    Deyuan Z, Lijiang W (1998) Investigation of chip in vibration drilling. Int J Mach Tools Manuf 38:165–176. doi: 10.1016/S0890-6955(97)00047-3 CrossRefGoogle Scholar
  5. 5.
    Chang SSF, Bone GM (2009) Thrust force model for vibration-assisted drilling of aluminum 6061-T6. Int J Mach Tools Manuf 49:1070–1076. doi: 10.1016/j.ijmachtools.2009.07.011 CrossRefGoogle Scholar
  6. 6.
    Neugebauer R, Stoll A (2004) Ultrasonic application in drilling. J Mater Process Technol 149:633–639. doi: 10.1016/j.jmatprotec.2003.10.062 CrossRefGoogle Scholar
  7. 7.
    Azarhoushang B, Akbari J (2007) Ultrasonic-assisted drilling of Inconel 738-LC. Int J Mach Tools Manuf 47:1027–1033. doi: 10.1016/j.ijmachtools.2006.10.007 CrossRefGoogle Scholar
  8. 8.
    Moraru GF, Veron P, Rabate P (2012) Drilling head with axial vibrations. Patent:US20120107062A1Google Scholar
  9. 9.
    Moraru GF, Brun-Picard D (2007) Dispositif de perçage à oscillations axiales. Patent:WO2007051839A1Google Scholar
  10. 10.
    Okamura K, Sasahara H, Segawa T, Tsutsumi M (2006) Low-frequency vibration drilling of titanium alloy. JSME Int J Ser C 49:76–82. doi: 10.1299/jsmec.49.76 CrossRefGoogle Scholar
  11. 11.
    Peigne G (2014) Ring-rolling bearing with axial displacement and shaping tooling equipped with such a bearing. Patent:WO 2008/000935 A1Google Scholar
  12. 12.
    Guibert N, Paris H, Rech J (2008) A numerical simulator to predict the dynamical behavior of the self-vibratory drilling head. Int J Mach Tools Manuf 48:644–655. doi: 10.1016/j.ijmachtools.2007.11.003 CrossRefGoogle Scholar
  13. 13.
    Pecat O, Meyer I (2013) Low frequency vibration assisted drilling of aluminium alloys. Adv Mater Res 769:131–138. doi: 10.4028/ CrossRefGoogle Scholar
  14. 14.
    Chang SSF, Bone GM (2005) Burr size reduction in drilling by ultrasonic assistance. Robot Comput Integr Manuf 21:442–450. doi: 10.1016/j.rcim.2004.11.005 CrossRefGoogle Scholar
  15. 15.
    Pecat O, Brinksmeier E (2014) Low damage drilling of CFRP/titanium compound materials for fastening. Procedia CIRP 13:1–7. doi: 10.1016/j.procir.2014.04.001 CrossRefGoogle Scholar
  16. 16.
    Jallageas J, K’nevez JY, Chérif M, Cahuc O (2012) Modeling and optimization of vibration-assisted drilling on positive feed drilling unit. Int J Adv Manuf Technol 67:1205–1216. doi: 10.1007/s00170-012-4559-4 CrossRefGoogle Scholar
  17. 17.
    Pecat O, Brinksmeier E (2014) Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material. Procedia CIRP 14:142–147. doi: 10.1016/j.procir.2014.03.050 CrossRefGoogle Scholar
  18. 18.
    Toews HG, Compton WD, Chandrasekar S (1998) A study of the influence of superimposed low-frequency modulation on the drilling process. Precis Eng 22:1–9. doi: 10.1016/S0141-6359(97)00085-8 CrossRefGoogle Scholar
  19. 19.
    Laporte S, De Castelbajac C (2012) Major breakthrough in multi material drilling, using low frequency axial vibration assistance. SAE Int J Mater Manuf 6:1–12. doi: 10.4271/2012-01-1866 CrossRefGoogle Scholar
  20. 20.
    Laheurte R, Cahuc O, Darnis P, Gerard A (2006) Behaviour law for cutting process. Int J Adv Manuf Technol 29:17–23. doi: 10.1007/s00170-004-2498-4 CrossRefGoogle Scholar
  21. 21.
    Ke F, Ni J, Stephenson DA (2006) Chip thickening in deep-hole drilling. Int J Mach Tools Manuf 46:1500–1507. doi: 10.1016/j.ijmachtools.2005.09.022 CrossRefGoogle Scholar
  22. 22.
    Ke F, Ni J, Stephenson DA (2005) Continuous chip formation in drilling. Int J Mach Tools Manuf 45:1652–1658. doi: 10.1016/j.ijmachtools.2005.03.011 CrossRefGoogle Scholar
  23. 23.
    Roukema JC, Altintas Y (2007) Generalized modeling of drilling vibrations. Part I: time domain model of drilling kinematics, dynamics and hole formation. Int J Mach Tools Manuf 47:1455–1473. doi: 10.1016/j.ijmachtools.2006.10.005 CrossRefGoogle Scholar
  24. 24.
    Cheng K (2009) Machining dynamics: fundamentals, applications and practices. Springer, London. doi: 10.1007/978-1-84628-368-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Mathieu Ladonne
    • 1
  • Mehdi Cherif
    • 1
  • Yann Landon
    • 2
  • Jean-Yves K’Nevez
    • 1
  • Olivier Cahuc
    • 1
  • Côme de Castelbajac
    • 3
  1. 1.Université de Bordeaux, UMR 5295TalenceFrance
  2. 2.Université de Toulouse, ICAToulouseFrance
  3. 3.MITIS SASBouguenaisFrance

Personalised recommendations