Advertisement

Engine blade regeneration: a literature review on common technologies in terms of machining

  • Berend Denkena
  • Volker Boess
  • Dennis Nespor
  • Felix Floeter
  • Felix Rust
ORIGINAL ARTICLE

Abstract

Repairing technologies enable a huge economical potential, especially in high-technology sectors like the aerospace industry with complex capital goods. Companies in these industries retain their knowledge concerning repair technologies, in order to maintain the advantage over their competitors. Thus, the quantity of publications dealing with technological challenges and scientific basics for repairing are limited. The main purpose of this literature review is to collect published information on common technologies regarding the regeneration of turbine blades to extract scientific basics and to present challenges that are currently unattended. The attention of this paper is focused particularly on the machining process. Due to the variety of damages on engine blades, the general process chain has to be adapted partly or in whole for each component. In the second part of this paper, a general process chain for regeneration is presented, including a classification of repair methods. The main interest of the third part addresses the recontouring, which is the final shape cutting of repaired engine blades. At this point, the previous research and occurring challenges are pointed out in two stages related to the machining process—before and during machining. In the last part, the achievable workpiece quality after machining is discussed.

Keywords

Aerospace Regeneration Process Machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altan T, Lillg B, Yen Y (2001) Manufacturing of dies and molds. CIRP Ann Manuf Technol 50(2):404–422CrossRefGoogle Scholar
  2. 2.
    Aschenbruck J, Adamczuk R, Seume JR (2014) Recent progress in turbine blade and compressor blisk regeneration, Procedia CIRP 3rd international conference on through-life engineering services, vol. 22, pp. 256–262Google Scholar
  3. 3.
    Bagci E (2009) Reverse engineering applications for recovery of broken or worn parts and re-manufacturing: three case studies. Adv Eng Softw 40:407–418CrossRefzbMATHGoogle Scholar
  4. 4.
    Bichmann S (2007) Maschinenintegrierte optische Messtechnik zur Freiform-Geometrieerfassung auf Werkzeugmaschinen, Rheinisch-Westfälische Technische Hochschule AachenGoogle Scholar
  5. 5.
    Bichmann S, Emonts M, Glasmacher L, Groll K, Kordt M (2005) Automatisierte Reparaturzelle OptoRep. wt Werkstattstechnik online, vol. Jahrgang 95 (2005) H. 11/12/, pp. 831–838Google Scholar
  6. 6.
    Bieler H (1997) Einkristalle reparieren, Sulzer AG, Technical reviewGoogle Scholar
  7. 7.
    Biermann D, Sacharow A, Surmann T, Wagner T (2010) Direct free-form deformation of NC programs for surface reconstruction and form-error compensation. Prod Eng 4(5):501–507CrossRefGoogle Scholar
  8. 8.
    Boess V, Nespor D, Samp A, Denkena B (2013) Numerical simulation of process forces during re-contouring of welded parts considering different material properties. CIRP J Manuf Sci Technol 6:167–174CrossRefGoogle Scholar
  9. 9.
    Brauny P, Hammerschmidt M, Malik M (1985) Repair of air-cooled turbine vanes of high-performance aircraft engines. Mater Sci TechnolGoogle Scholar
  10. 10.
    Brecher C, Klocke F, Breitbach T, Do-Khac D, Heinen D, Karlberger A, Rosen C-J (2011) A hybrid machining center for enabling new die manufacturing and repair concepts. Production Engeneering Research Development 5:405–413Google Scholar
  11. 11.
    Bremer C (2006) AROSATEC (Automated Repair and Overhaul System for Aero Turbine Engine Components) final report, BCT All-round ISQ Metris MTU Sifco SkytekGoogle Scholar
  12. 12.
    Bremer C (2006) Research on adaptive manufacturing and automated repair of turbine components, 2006Google Scholar
  13. 13.
    Brinksmeier E, Berger U, Janssen R (1998) Advanced mechatronic technology for turbine blades maintenance, 1998Google Scholar
  14. 14.
    Butler J (1997) Rough nozzle surfaces hurt turbine performance. Power Eng (Barrington) 101:31–38Google Scholar
  15. 15.
    Carter T (2005) Common failures in gas turbine blades. Eng Fail Anal 12:237–247CrossRefGoogle Scholar
  16. 16.
    Chui KL, Chiu WK, Yu KM (2008) Direct 5-axis tool-path generation from point cloud input using 3D biars fitting. Robot Comput Integr Manuf 24: 270–286Google Scholar
  17. 17.
    Denkena B, Nespor D, Boess V, Koehler J (2014) Residual stresses formation after re-contouring of welded Ti-67Al-4V parts by means of 5-axis ball nose end milling. CIRP J Manuf Sci Technol 7(4):347–360CrossRefGoogle Scholar
  18. 18.
    Denkena B, Boess V, Nespor D, Rust F, Floeter F (2014) Approaches for improving cutting processes and machine tools in re-contouring. CIRP J Manuf Sci Technol 22:239–242Google Scholar
  19. 19.
    Dattoma V, DE Giorgi M, Nobile R (2006) On the evolution of welding residual stress after milling and cutting machining. Comput Struct 84:1965–1976CrossRefGoogle Scholar
  20. 20.
    Deweze A, Oppert A, Reich G (2008) First class Refurbishment für Gasturbinenschaufeln, 2008Google Scholar
  21. 21.
    Eberlein A (2007) Phases of high-tech repair implementation, MTU aero engines GmbHGoogle Scholar
  22. 22.
    Gao J, Chen X, Yilmaz O, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J 36:1170–1179Google Scholar
  23. 23.
    Gao J, Chen X, Zheng D, Yilmaz O, Gindy N (2006) Adaptive restoration of complex geometry parts through reverse engineering application. Adv Eng Softw 37:592–600CrossRefGoogle Scholar
  24. 24.
    Geffert N (2007) Die Reparatur-Spezialisten, MTUGoogle Scholar
  25. 25.
    Glavicic MG, Sargent K, Kobryn P, Semiatin S (2003) The repair of single crystal nickel super alloy turbine blades using laser engineered net shape (lens) technology. Air force Res LabGoogle Scholar
  26. 26.
    Greaves W (2005) Kostengünstige Reparatur von Turbinenschaufeln durch Vakuum-Hartlöten, Sulzer AG, Technical reviewGoogle Scholar
  27. 27.
    Gruenendick T (2000) Loeten in der Luftfahrtindustrie. Mitteilung aus dem Institut für Maschinenwesen der Technischen Universität Clausthal, vol. 25, pp. 19–22Google Scholar
  28. 28.
    Grylls R (2012) Inconel blisk repair by laser deposition, NAVAIR public release, pp. 1–6Google Scholar
  29. 29.
    Hendriks M (2006) Reparatur statt Austausch, Sulzer AG, Technical reviewGoogle Scholar
  30. 30.
    Huang H, Gong ZM, Chen XQ, Zhou L (2003) SMART robotic system for 3D profile turbine vane airfoil repair. Int J Adv Manuf Technol 21:275–283CrossRefGoogle Scholar
  31. 31.
    Huang H, Gong Z, Chen X, Zhou L (2002) Robotic grinding and polishing for turbine-vane overhaul. J Mater Process Technol 127:140–145CrossRefGoogle Scholar
  32. 32.
    Janssen R (1998) Reparatur von Turbinenschaufeln - Optische 3D-Digitalisierung ermöglicht die Automatisierung: shakerGoogle Scholar
  33. 33.
    Kalocsay R, Bergs T, Klocke F (2014) Impact of clamping technology on horizontal and vertical process chain performance. New Production Technologies in Aerospace Industry, pp. 11–17Google Scholar
  34. 34.
    Kelbassa I (2006) Qualifizieren des Laserstrahl-Auftragschweißens von BLISKs aus Nickel- und Titanbasislegierungen. Schriften des Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology, vol. 21, pp. 751–758Google Scholar
  35. 35.
    Kelbassa I, Gasser A, Backes G, Keutgen S, Kreutz E-W, Pirch N (2002) Repair and (re)conditioning of compressor and turbine blades by CO2 and Nd:YAG laser radiation. Schriften des Forschungszentrums Jülich, Reihe Energietechnik/Energy Technology, vol. 21, pp. 751–758Google Scholar
  36. 36.
    Krause S (2001) Laser Pulver Auftragsschweißen. Sulzer Tech Rev 4:4–6Google Scholar
  37. 37.
    Kim H-I, Park H-S, Koo J-M, Seok C-S, Yang S-H, Kim M-Y (2012) Evaluation of welding characteristics for manual overlay and laser cladding materials in gas turbine blades. J Mech Sci Technol 26:2015–2018CrossRefGoogle Scholar
  38. 38.
    Lopez De Lacalle L, Lamikiz A, Sanchez J, Salgado M (2007) Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling. Int J Mach Tools Manuf 47:388–400CrossRefGoogle Scholar
  39. 39.
    Miglietti W, Summerside I (2010) Repair process technology development and experience for W501F Row 1 Hot gas path blades, 2010Google Scholar
  40. 40.
    Moehring H (2008) Reaktionsschnelle Instandsetzung von Formen mit einer transportablen hybridkinematischen Bearbeitungseinheit, Leibniz Universität HannoverGoogle Scholar
  41. 41.
    Moehring H-C, Floeter F, Denkena B (2012) Messtechnische analyse formflexibler Spannmethoden. wt Werkstattstechnik online, vol. 102, no. 11, pp. 795–800Google Scholar
  42. 42.
    MTU (2007) Report - Die nächste Generation, MTU Aero engines holding AGGoogle Scholar
  43. 43.
    Mullins P (2001) Adaptive machining to improve blade repair. Diesel & Gas Turbine Worldwide, vol. September/, pp. 78–79Google Scholar
  44. 44.
    Nowotny S, Scharek S, Beyer E, Richter K-H (2007) Laser beam build-up welding: precision in repair, surface cladding, and direct 3D metal deposition. J Therm Spray Technol 16(3):344–348CrossRefGoogle Scholar
  45. 45.
    Richter K-H (2008) Reparatur von Bliskschaufeln mittels Laserstrahlgenerieren, MTU Aero Engines GmbHGoogle Scholar
  46. 46.
    Rupp O (2001) Instandhaltungskosten bei zivilen Strahltriebwerken, MTU MaintenanceGoogle Scholar
  47. 47.
    Stolle R (2009) Conventional and Advanced coatings for turbine airfoils. MTU Aero Engines, 80955 München, Germany. Available at http://www.docstoc.com/docs/149741604/Conventional-and-advanced-coatings-for-turbine-airfoils-MTU-Aero
  48. 48.
    Thomson A, Anderton DA (2010) Development in gas turbine repairs. Proceedings of ASME turbo expo 2010: power for land, sea and air, 2010Google Scholar
  49. 49.
    Uhlmann E, Heitmüller F, Manthei M, Reinkorber S (2013) Applicability of industrial robots for machining and repair processes. 2nd international through-life engineering service conference, vol. 11, pp. 234–238Google Scholar
  50. 50.
    Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys. Int J Mach Tools Manuf 51:250–280CrossRefGoogle Scholar
  51. 51.
    Vitek J, David S, Babu S (2008) Welding and weld repair of single crystal gas turbine alloys, Oak Ridge National LaboratoryGoogle Scholar
  52. 52.
    Walton P (2007) Adaptive machining for turbine blade repair. Modern machine shopGoogle Scholar
  53. 53.
    Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aero engine components. Robot Comput Integr Manuf 26:190–201CrossRefGoogle Scholar
  54. 54.
    Yilmaz O, Noble D, Gindy N (2005) A study of turbomachinery components machining and repairing methodologies. Aircraft Eng Aerosp Technol Int J 77:455–466CrossRefGoogle Scholar
  55. 55.
    Zain-Ul-Abdeina M, Neliasa D, Jullien J, Deloisonb D (2009) Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application. J Mater Process Technol 209:2907–2917CrossRefGoogle Scholar
  56. 56.
    Zheng J, Li Z, Chen X (2006) Worn area modeling for automating the repair of turbine blades. Int J Adv Manuf Technol 29:1062–1067CrossRefGoogle Scholar
  57. 57.
    Zhu L (2008) Reparatur von Triebwerkskomponenten, Rolls-RoyceGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Berend Denkena
    • 1
  • Volker Boess
    • 1
  • Dennis Nespor
    • 1
  • Felix Floeter
    • 1
  • Felix Rust
    • 1
  1. 1.Institute of Production Engineering and Machine ToolsGarbsenGermany

Personalised recommendations