Pressure-sensitive fasteners for active disassembly

  • Jef R. Peeters
  • Wannes Van den Bossche
  • Tom Devoldere
  • Paul Vanegas
  • Wim Dewulf
  • Joost R. Duflou


This paper presents a number of novel active fasteners developed to significantly lower disassembly costs during reconditioning, remanufacturing, and recycling of products. In the initial stage of the fastener development process, the applicability of distinct trigger signals for active disassembly (AD) is evaluated. Based on this evaluation, the high robustness of using a pressure increase or decrease as a nondestructive trigger for AD is demonstrated. Since previously proposed pressure-sensitive fasteners face considerable drawbacks upon implementation in electronic products due to the ongoing trend of miniaturization, a second generation of pressure-based active fasteners is developed. Evaluation of these fasteners by means of axiomatic design techniques and prototyping demonstrates that the presented snap-fits, which make use of a closed-cell elastomer foam, are most robust. Subsequently, the contraction forces that closed-celled foams can exert as a function of an increase in ambient air pressure are experimentally determined. Furthermore, the implementation of pressure-sensitive foam-based snap-fits in both a modem and a payment terminal is described. Results of these experiments demonstrate that the contraction force of a cross-linked metallocene polyethylene closed-cell foams can reach up to 6 N/cm2 at an overpressure of 2 bar and that the foam-based snap-fits can be released at a pressure increase of 2 bar.


Design for disassembly Active disassembly Automated disassembly Active fastener design Closed-cell elastomer foam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Umeda Y, Takata S, Kimura F, Tomiyama T, Sutherland JW, Kara S, Herrmann C, Duflou JR (2012) Toward integrated product and process life cycle planning—an environmental perspective. CIRP Ann Manuf Technol 61(2):681–702. doi: 10.1016/j.cirp.2012.05.004 CrossRefGoogle Scholar
  2. 2.
    Boothroyd G, Alting L (1992) Design for assembly and disassembly. CIRP Ann Manuf Technol 41(2):625–636. doi: 10.1016/S0007-8506(07)63249-1 CrossRefGoogle Scholar
  3. 3.
    Alting DL, Jøgensen DJ (1993) The life cycle concept as a basis for sustainable industrial production. CIRP Ann Manuf Technol 42(1):163–167. doi: 10.1016/S0007-8506(07)62417-2 CrossRefGoogle Scholar
  4. 4.
    Sundin E Product and process design for successful remanufacturing, 2004 Linköpings UniversitetGoogle Scholar
  5. 5.
    Yang SS, Ong SK, Nee AYC (2014) EOL strategy planning for components of returned products. Int J Adv Manufac Technol: 1–13. doi: 10.1007/s00170-014-6505-0
  6. 6.
    Yang Q, Yu S, Sekhari A (2011) A modular eco-design method for life cycle engineering based on redesign risk control. Int J Adv Manuf Technol 56(9–12):1215–1233. doi: 10.1007/s00170-011-3246-1 CrossRefGoogle Scholar
  7. 7.
    Meskers C, Hagelüken C, Salhofer S (2009) Impact of pre-processing routes on precious metal recovery from PCs. Paper presented at the European Metallurgical Conference (EMC) Innsbruck, AustriaGoogle Scholar
  8. 8.
    Peeters JR, Vanegas P, Tange L, Van Houwelingen J, Duflou JR (2013) Closed loop recycling of plastics containing flame retardants. Res Conserv Recyc 84:36–43Google Scholar
  9. 9.
    Peeters JR, Vanegas P, Duflou JR, Mizunoc T, Fukushigec S, Umeda Y (2013) Effects of boundary conditions on the end-of-life treatment of LCD TVs. CIRP Ann Manufac Technol 62(1):35–38CrossRefGoogle Scholar
  10. 10.
    Willems B, Dewulf W, Duflou J (2005) Design for active disassembly (DfAD)—an outline for future research. Paper presented at the IEEE International Symposium on Electronics & the EnvironmentGoogle Scholar
  11. 11.
    Duflou JR, Willems B, Dewulf W (2006) Towards self-disassembling products—design solutions for economically feasible large-scale disassembly. Innovation in Life Cycle Engineering and Sustainable Development: 87–110Google Scholar
  12. 12.
    Boothroyd G (1987) Design for assembly—the key to design for manufacture. Int J Adv Manuf Technol 2(3):3–11. doi: 10.1007/bf02601481 CrossRefGoogle Scholar
  13. 13.
    Chang T-R, Wang C-S, Wang C-C (2013) A systematic approach for green design in modular product development. Int J Adv Manuf Technol 68(9–12):2729–2741. doi: 10.1007/s00170-013-4865-5 CrossRefGoogle Scholar
  14. 14.
    Seliger G, Basdere B, Keil T, Rebafka U (2002) Innovative processes and tools for disassembly. CIRP Ann Manuf Technol 51(1):37–40. doi: 10.1016/S0007-8506(07)61460-7 CrossRefGoogle Scholar
  15. 15.
    Torres F (2004) Automatic PC disassembly for component recovery. Int J Adv Manuf Technol 23(1–2):39CrossRefGoogle Scholar
  16. 16.
    Kim HJ, Kernbaum S, Seliger G (2009) Emulation-based control of a disassembly system for LCD monitors. Int J Adv Manuf Technol 40(3/4):383–392. doi: 10.1007/s00170-007-1334-z CrossRefGoogle Scholar
  17. 17.
    Basdere B (2003) Disassembly factories for electrical and electronic products to recover resources in product and material cycles. Environ Sci Technol 37(23):5354CrossRefGoogle Scholar
  18. 18.
    Kopacek P, Kopacek B (2006) Intelligent, flexible disassembly. Int J Adv Manuf Technol 30(5–6):554–560. doi: 10.1007/s00170-005-0042-9 CrossRefGoogle Scholar
  19. 19.
    Schumacher P, Jouaneh M (2013) A system for automated disassembly of snap-fit covers. Int J Adv Manuf Technol 69(9–12):2055–2069. doi: 10.1007/s00170-013-5174-8 CrossRefGoogle Scholar
  20. 20.
    Duflou JR, Seliger G, Kara S, Umeda Y, Ometto A, Willems B (2008) Efficiency and feasibility of product disassembly: a case-based study. CIRP Ann Manuf Technol 57(2):583–600. doi: 10.1016/j.cirp.2008.09.009 CrossRefGoogle Scholar
  21. 21.
    Merdan M, Lepuschitz W, Meurer T, Vincze M Towards ontology-based automated disassembly systems. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, 7–10 Nov. 2010. pp 1392–1397Google Scholar
  22. 22.
    Weigl-Seitz A, Hohm K, Seitz M, Tolle H (2006) On strategies and solutions for automated disassembly of electronic devices. Int J Adv Manuf Technol 30(5–6):561–573. doi: 10.1007/s00170-005-0043-8 CrossRefGoogle Scholar
  23. 23.
    Lee SG, Lye SW, Khoo MK (2001) A multi-objective methodology for evaluating product end-of-life options and disassembly. Int J Adv Manuf Technol 18(2):148–156. doi: 10.1007/s001700170086 CrossRefGoogle Scholar
  24. 24.
    Pretsch T (2010) Review on the functional determinants and durability of shape memory polymers. J Polym 2(3):120CrossRefGoogle Scholar
  25. 25.
    Willems B (2007) Doctoral dissertation: development of improved fastening techniques in support of design for disassembly strategies. KU Leuven, Leuven, ISBN: 978-90-5682-822-6Google Scholar
  26. 26.
    Tesla N, James Clerk M (2011) Wireless power transfer technology and EV applicationGoogle Scholar
  27. 27.
    Chiodo JD, Billett EH, Harrison DJ (1999) Active disassembly using shape memory polymers for the mobile phone industry. Ieee Int Symp Electr 151–156:344Google Scholar
  28. 28.
    Chiodo JD, Harrison DJ, Billett EH (2001) An initial investigation into active disassembly using shape memory polymers. P I Mech Eng B-J Eng 215(5):733–741Google Scholar
  29. 29.
    Chiodo JD, McLaren J, Billett EH, Harrison DJ Isolating LCD’s at end-of-life using active disassembly technology: a feasibility study. In: Proceedings of the 2000 Ieee International Symposium on Electronics and the Environment, 2000. pp 318–323, 359Google Scholar
  30. 30.
    Chiodo JD, Billett EH, Harrison DJ Preliminary investigations of active disassembly using shape memory polymers. In: First International Symposium on Environmentally Conscious Design and Inverse Manufacturing, 1999. pp 590–596, 1021Google Scholar
  31. 31.
    Chiodo JD, Jones N, Billett EH, Harrison DJ (2002) Shape memory alloy actuators for active disassembly using ‘smart’ materials of consumer electronic products. Mater Des 23(5):471–478CrossRefGoogle Scholar
  32. 32.
    Nick Jones DH, Hussein H, Billett E, Chiodo J (2003) Towards self-disassembling vehicles. J Sustain Prod Des 3(1):59–74CrossRefGoogle Scholar
  33. 33.
    Arnaiz S, Bodenhoefer K, Harrison D, Herrmann C, Hussein H, Irasarri L, Malaina M, Schnecke D, Tanskanen P (2004) ‘Active disassembly using Smart Materials’ End of Life technology for WEEE—results from the framework V project. Electronics Goes Green 2004 (Plus): driving forces for future electronics, Proceedings: 275–280, 1092Google Scholar
  34. 34.
    Bain P, Manfre G (2006) Method and apparatus for bonding and debonding adhesive interface surfaces. US PatentGoogle Scholar
  35. 35.
    Cingil HE (2010) Conducting polymer-coated thermally expandable microspheres. Polym Chem 1(8):1323CrossRefGoogle Scholar
  36. 36.
    Carrell J (2010) Robust analysis of the active disassembly process. Paper presented at the IEEE International Symposium on Sustainable Systems and TechnologyGoogle Scholar
  37. 37.
    Kurs A (2007) Wireless power transfer via strongly coupled magnetic resonances. J Sci 317(5834):83MathSciNetCrossRefGoogle Scholar
  38. 38.
    Willems B (2007) Development of improved fastening techniques in support of design for disassembly strategies. Katholieke Universiteit Leuven, LeuvenGoogle Scholar
  39. 39.
    Savransky SD (2000) Engineering of creativity: introduction to Triz methodology of inventive problem solving. CRC Press, Boca RatonCrossRefGoogle Scholar
  40. 40.
    Prokhorov AM (1970) Great Soviet EncyclopediaGoogle Scholar
  41. 41.
    Pugliesi-Conti J, Girardiere C (1990) Snap-fit device for joining two parts together US005102253AGoogle Scholar
  42. 42.
    Kott N (2003) Fastener system. US2003/0044229Google Scholar
  43. 43.
    Willems B, Dewulf W, Duflou JR (2007) Active snap-fit development using topology optimization. Int J Prod Res 45(18–19):4163–4187. doi: 10.1080/00207540701440311 CrossRefzbMATHGoogle Scholar
  44. 44.
    Willems B, Dewulf W, Duflou JR (2007) Pressure-triggered active fasteners: design results using topology optimization. Proceed 2007 I.E. Int Sympos Electron Environ, Conf Rec 184–189:262Google Scholar
  45. 45.
    Van Horenbeek A, Albert-Nagy A (2009) Pressure-based fastener optimization and implementation in a Philips flat screen TV. KU Leuven, LeuvenGoogle Scholar
  46. 46.
    Neubert H (2000) Simultan lösbare Verbindungen zur Rationalisierung der Demontage in der Feinwerktechnik. Technical University of DresdenGoogle Scholar
  47. 47.
    Peeters JR, Van den Bossche W, Devolder T, Dewulf W, Duflou JR (2014) Second generation of pressure sensitive fasteners for active disassembly. Paper presented at the 21st CIRP Conference on Life Cycle Engineering, Norway, TrondheimGoogle Scholar
  48. 48.
    Suh NP (1998) Axiomatic design theory for systems. Res Eng Des 10(4):189–209CrossRefGoogle Scholar
  49. 49.
    CeraCon (2013) S-FIT® (Soft foam injection technology).

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentKU LeuvenLeuvenBelgium
  2. 2.TP VisionGhentBelgium

Personalised recommendations