Monitoring the coefficient of variation using a variable sample size control chart in short production runs

  • Asma Amdouni
  • Philippe Castagliola
  • Hassen Taleb
  • Giovanni Celano
ORIGINAL ARTICLE

Abstract

Monitoring the coefficient of variation (CV) is an effective approach to monitor a process when both the process mean and the standard deviation are not constant but, nevertheless, proportional. Until now, few contributions have investigated the monitoring of the CV for short production runs. This paper proposes an adaptive Shewhart control chart implementing a variable sample size (VSS) strategy in order to monitor the coefficient of variation in a short production run context. Formulas for the truncated average run length are derived. Moreover, a comparison is performed with a Fixed Sampling Rate Shewhart chart for the CV in order to evaluate the performance of each chart in a short run context. An example illustrates the use of this chart on real data.

Keywords

Coefficient of variation Variable sample Size Truncated average sample size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kang CW, Lee MS, Seong YJ, Hawkins DM (2007) A control chart for the coefficient of variation. J Qual Technol 39(2):151–158Google Scholar
  2. 2.
    Hong EP, Kang CW, Baek JW, Kang HW (2008) Development of CV control chart using EWMA technique. J Soc Korea Ind Sys Eng 31(4):114–120Google Scholar
  3. 3.
    Castagliola P, Celano G, Psarakis S (2011) Monitoring the coefficient of variation using EWMA charts. J Qual Technol 43(3):249–265Google Scholar
  4. 4.
    Calzada ME, Scariano SM (2013) A synthetic control chart for the coefficient of variation. J Stat Comput Simul 85(5):853–867MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castagliola P, Achouri A, Taleb H, Celano G, Psarakis S (2012a) Monitoring the coefficient of variation using a variable sampling interval control chart. Qual Reliab Eng Int 29(8):1135–1149CrossRefGoogle Scholar
  6. 6.
    Castagliola P, Achouri A, Taleb H, Celano G, Psarakis S (2013) Monitoring the coefficient of variation using control charts with run rules. Qual Technol Quantitative Manag 10(1):75–94Google Scholar
  7. 7.
    Castagliola P, Achouri A, Taleb H, Celano G (2015) Monitoring the coefficient of variation using a variable sample size control chart. Int J Adv Manuf Technol. in pressGoogle Scholar
  8. 8.
    Ladany SP (1973) Optimal use of control charts for controlling current production. Manag Sci 19(7):763–772CrossRefGoogle Scholar
  9. 9.
    Ladany SP, Bedi DN (1976) Selection of the optimal setup policy. Naval Res Log Q 23(2):219–233CrossRefMATHGoogle Scholar
  10. 10.
    Del Castillo E, Montgomery DC (1993) Optimal design of control charts for monitoring short production runs. Econ Qual Control 8(4):225–240MATHGoogle Scholar
  11. 11.
    Del Castillo E, Montgomery DC (1996) A general model for the optimal economic design of =X charts used to control short or long run processes. IIE Trans 28(3):193–201CrossRefGoogle Scholar
  12. 12.
    Calabrese J (1995) Bayesian process control for attributes. Manag Sci 41(4):637–645CrossRefMATHGoogle Scholar
  13. 13.
    Tagaras G (1996) Dynamic control charts for finite production runs. Eur J Oper Res 91(1):38–55CrossRefMATHGoogle Scholar
  14. 14.
    Tagaras G, Nikolaidis Y (2002) Comparing the effectiveness of various bayesian =X control charts. Oper Res 50(5):878–888MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nenes G, Tagaras G (2007) The economically designed two sided bayesian \(\bar {X}\) control chart. Eur J Oper Res 183(1):263–277CrossRefMATHGoogle Scholar
  16. 16.
    Celano G, Castagliola P, Fichera S, Trovato E (2011) Shewhart and EWMA t charts for short production runs. Qual Reliab Eng Int 27(3):313–326CrossRefGoogle Scholar
  17. 17.
    Nenes G, Tagaras G (2005) The CUSUM chart for monitoring short production run. In: Proceedings of 5th International Conference on Analysis of Manufacturing Systems – Production Management. Zakynthos Island, Greece, pp 43–50Google Scholar
  18. 18.
    Nenes G, Tagaras G (2010) Evaluation of CUSUM charts for finite-horizon processes. Commun Stat – Simul Comput 39(3):578–597MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Castagliola P, Celano G, Fichera S, Nenes G (2012b) The variable sample size t control chart for monitoring short production runs. Int J Adv Manuf Technol 64(1):56–68Google Scholar
  20. 20.
    Castagliola P, Amdouni A, Taleb H, Celano G (2015) One-sided shewhart-type charts for monitoring the coefficient of variation in short production runs. Qual Technol Quantitative Manag 12(1):53–67Google Scholar
  21. 21.
    Ryu JH, Wan H, Kim S (2010) Optimal design of a cusum chart for a mean shift of unknown size. J Qual Technol 42(3):311–326Google Scholar
  22. 22.
    Celano G, Castagliola P, Nenes G, Fichera S (2013) Performance of t control charts in short runs with unknown shift sizes. Comput Ind Eng 64:56–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Asma Amdouni
    • 1
  • Philippe Castagliola
    • 2
  • Hassen Taleb
    • 3
  • Giovanni Celano
    • 4
  1. 1.Institut Superieur de GestionUniversite de TunisTunisTunisia
  2. 2.LUNAM Université, IRCCyN UMR CNRS, Université de NantesNantesFrance
  3. 3.Higher Institute of Business Administration of GafsaUniversity of GafsaGafsaTunisia
  4. 4.Department of Industrial EngineeringUniversity of CataniaCataniaItaly

Personalised recommendations