Time-varying process control for stringer sheet forming by a deterministic derivative-free optimization approach

  • Frederic Bäcker
  • Daniela Bratzke
  • Peter GrocheEmail author
  • Stefan Ulbrich


Today, two major trends of sheet metal forming are the improvement of process control and the customization of semi-finished products. Both trends are intertwined, as modified wrought materials introduce new failure modes to the forming process and altered boundary conditions to the determination of optimal process control. The objective of this paper is to provide an effective, robust, and reliable optimization approach for process control of sheet metal forming processes with tailored semi-finished parts. For demonstration purposes, the obtained optimization scheme is applied to sheet metal hydroforming with blanks reinforced by laser-welded stringers prior to forming (stringer sheets). Controllable parameters of this process are the internal pressure and the blank holder force. The predominant failure modes, related to the nature of the semi-finished part, are stringer buckling and necking (bursting) at the stringer ends. The related control problem was formulated as an optimization problem with objective function and restrictions on the optimization parameters (process control) and state variables (displacement). The optimization and state variables were coupled by a finite element simulation of the process. The optimization problem was treated by a penalty approach and solved using the COBYLA algorithm (Constrained Optimization BY Linear Approximations) without any need of further user interference. The obtained optimal control of a time-varying blank holder force significantly extends the capabilities of the targeted forming process, as it allows for a defect-free production of parts with narrower curvatures and higher stringers. All simulation and optimization results are validated experimentally.


Deep drawing Hydroforming Stringer sheets Optimization Process control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dixit PM, Dixit US (2008) Optimization of metal forming and machining processes, Model Metal Form Mach Process pp. 549–577Google Scholar
  2. 2.
    Hu W, Yao LG, Hua ZZ (2008) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mater Process Technol 197(1):77–88CrossRefGoogle Scholar
  3. 3.
    Gharib HH, Wifi AS, Younan MY, Nassef AO (2007) Blank holder force optimisation strategy in deep drawing process. Int J Comput Mater Sci Surf Eng 1(2):226–241Google Scholar
  4. 4.
    Hosseini A, Kadkhodayan M (2014) A hybrid NN-FE approach to adjust blank holder gap over punch stroke in deep drawing process. Int J Adv Manuf Technol 71(1-4):337–355CrossRefGoogle Scholar
  5. 5.
    Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2008) Optimization with PDE constraints. Vol. 23, SpringerGoogle Scholar
  6. 6.
    Herzog R, Meyer C, Wachsmuth G (2012) C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM J Control Optim 50(5):3052–3082MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. Vol. 8, SIAMGoogle Scholar
  8. 8.
    Vogler F, Bäcker F, Groche P (2010) Tailored tubes and blanks for hydroforming. In: Liewald, M.: Hydroforming of Sheets Tubes and Profiles, MAT INFOGoogle Scholar
  9. 9.
    Nocedal J, Wright SJ (2006) Numerical optimization, SpringerGoogle Scholar
  10. 10.
    Groche P, Bäcker F (2013) Springback in stringer sheet stretch forming. Ann CIRP 62(2):275–278CrossRefGoogle Scholar
  11. 11.
    Shu LH, Ueda K, Chiu I, Cheong H (2011) Biologically inspired design. Ann CIRP 60(2):673–693CrossRefGoogle Scholar
  12. 12.
    Groche P, Schmitt W, Bohn A, Gramlich S, Ulbrich S, Günther U (2012) Integration of manufacturing-induced properties in product design. Ann CIRP 61(1):163–166CrossRefGoogle Scholar
  13. 13.
    Groche P, Ertugrul M (2008) Innenhochdruck-umformung von verzweigten Flächenträgern. wt-online – Ausgabe 10–2008, pp. 781–786Google Scholar
  14. 14.
    Brenneis H (2001) Strukturbauteil, insbesondere für ein Flugzeug und Verfahren zur Herstellung eines Strukturbauteils. European patent EP 1 127 785 A2, EADS Airbus GmbHGoogle Scholar
  15. 15.
    Groche P, Ringler J, Abu Schreehah T (2009) Bending-rolling combinations for strips with optimized cross section geometries. Ann CIRP 58(1):263–266CrossRefGoogle Scholar
  16. 16.
    Luo AA (2013) Magnesium casting technology for structural applications. J Magnes Alloys 1:2–22, ElsevierCrossRefGoogle Scholar
  17. 17.
    El-Soudani SM (2006) Method of making integrally stiffened axial load carrying skin panels for primary aircraft structure and fuel tank structures. US-Patent, US 7093470 B2, Original Assignee: The Boeing CompanyGoogle Scholar
  18. 18.
    Pahl G, Beitz W, Feldhusen J, Grote KH (2006) Konstruktionslehre. Springer Verlag, BerlinGoogle Scholar
  19. 19.
    Munroe J, Wilkins K, Gruber M (2000) Integral Airframe Structures (IAS) – Validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs. NASA/CR-1000-209337, Boing Commercial Airplane Group, Seattle, WashingtonGoogle Scholar
  20. 20.
    O’Hara P (2002) Peen forming – a developing technique. Proceedings of the 8th International Conference on Shot Peening (ICSP-8), Garmisch-PartenkirchenGoogle Scholar
  21. 21.
    Mynors DJ, Zhang B (2002) Applications and capabilities of explosive forming. J Mater Process Technol 125–126:1–25CrossRefGoogle Scholar
  22. 22.
    Zhan L, Lin J, Dean TA (2011) A review of the development of creep age forming: experimentation, modelling and applications. Int J Mach Tools Manuf 51(1):1–17CrossRefGoogle Scholar
  23. 23.
    Simmons TC (1952) Integrally stiffened wing panels formed by shot peening method. Western MetalsGoogle Scholar
  24. 24.
    Bäcker F, Abedini S, Groche P (2012) Stringer sheet forming. Proceedings of NAMRI/SME, Vol. 40Google Scholar
  25. 25.
    Neugebauer R (Editor) et al (2007) Hydro-umformung. Springer-Verlag Berlin HeidelbergGoogle Scholar
  26. 26.
    Singh H (2003) Fundamentals of hydroforming. Society of Manufacturing EngineersGoogle Scholar
  27. 27.
    Bäcker F, Jalizi B, Mohammad OJ, Groche P (2012) Einfluss zerspanender Halbzeugvorbereitung auf Dichtheit und Reibung beim wirkmedienbasierten Tiefziehen verzweigter Bleche. Tagungsband 4. Zwischenkolloquium des SFB 666, Meisenbach Verlag, pp. 77–82Google Scholar
  28. 28.
    Groche P, Bäcker F, Ertugrul M (2010) Möglichkeiten und Grenzen der Stegblechumformung, wt-online – Ausgabe 10–2010, pp. 760–765Google Scholar
  29. 29.
    Powell MJD (1994) A direct search optimization method that models the objective and constraint functions by linear interpolation. Advances in optimization and numerical analysis. Springer, Netherlands, pp 51–67Google Scholar
  30. 30.
    Conn AR, Gould NI, Toint PL (2000) Trust region methods. Vol. 1, SiamGoogle Scholar
  31. 31.
    Steven G, Johnson NL (2014) Opt library: Nonlinear optimization package., 2.07

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Frederic Bäcker
    • 1
  • Daniela Bratzke
    • 2
  • Peter Groche
    • 1
    Email author
  • Stefan Ulbrich
    • 2
  1. 1.Institute for Production Engineering and Forming Machines (PtU)Technische UniversitätDarmstadtGermany
  2. 2.Department of Mathematics, Research Group Nonlinear OptimizationTechnische UniversitätDarmstadtGermany

Personalised recommendations