An investigation on swarm intelligence methods for the optimization of complex part programs in CNC turning

  • M. Sortino
  • S. Belfio
  • G. Totis
  • L. Di Gaspero
  • M. Nali
ORIGINAL ARTICLE

Abstract

Automation of engineering procedures for the development of new manufacturing processes is of great importance in modern competitive conditions. For example, metalworking companies would greatly benefit from the development of methods for automatic generation, testing and optimization of part programs for machining operations. Indeed, the generation of part programs—even by using CAM software—does still require strong human intervention and it is basically a best guess approach with minimum optimization. Moreover, further refinement and correction of the part program on the machine tool is often necessary. Machining operations are generally based on a large number of parameters and therefore optimization strategies should be able to deal with high-dimensional spaces and disjoint domains. In this paper, two swarm intelligence optimization algorithms—particle swarm optimization (PSO) and artificial bee colony (ABC)—have been applied for optimizating the part program of a complex turning part. The optimizers were implemented in a framework for automatic part program generation, realistic simulation, and feasibility analysis. The results evidenced that both approaches were capable of optimizing efficiently the part program, and that the optimization time of the PSO approach on modern computers may be suitable for application in production.

Keywords

Turning Optimization Swarm intelligence Part program Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Annals Manuf Technol 54(2):115. doi: 10.1016/S0007-8506(07)60022-5 CrossRefGoogle Scholar
  2. 2.
    Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations and CNC Design. Cambridge University PressGoogle Scholar
  3. 3.
    Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I (2014) Virtual process systems for part machining operations. CIRP Annals - Manuf Technol. doi: 10.1016/j.cirp.2014.05.007
  4. 4.
    Bouzakis KD, Aichouh P, Efstathiou K (2003) Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. Int J Mach Tools Manuf 43(5):499. doi: 10.1016/S0890-6955(02)00265-1 CrossRefGoogle Scholar
  5. 5.
    Bouzakis KD, Friderikos O, Tsiafis I (2008) FEM-supported simulation of chip formation and flow in gear hobbing of spur and helical gears. CIRP J Manuf Scie Technol 1(1):18. doi: 10.1016/j.cirpj.2008.06.004 CrossRefGoogle Scholar
  6. 6.
    Sortino M, Totis G, Kuljanić E, Cukor G (2009) Simulation of cutting forces and cutting conditions in complex turning operations. In: Proceedings of the 12th international scientific conference on production engineering - CIM2009, pp 201–207Google Scholar
  7. 7.
    Sortino M, Belfio S, Totis G (2014) An innovative approach for automatic generation, verification and optimization of part programs in turning. J Manuf Syst. doi: 10.1016/j.jmsy.2014.03.002
  8. 8.
    Chen MC, Tsai DM (1996) A simulated annealing approach for optimization of multi-pass turning operations. Int J Prod Res 34(10):2803. doi: 10.1080/00207549608905060 CrossRefMATHGoogle Scholar
  9. 9.
    Su CT, Chen MC (1999) Computer-aided optimization of multi-pass turning operations for continuous forms on CNC lathes. IIE Trans 31(7):583. doi: 10.1023/A:1007678615643 Google Scholar
  10. 10.
    Amiolemhen P, Ibhadode A (2004) Application of genetic algorithms determination of the optimal machining parameters in the conversion of a cylindrical bar stock into a continuous finished profile. Int J Mach Tools Manuf 44(12–13):1403. doi: 10.1016/j.ijmachtools.2004.02.001 CrossRefGoogle Scholar
  11. 11.
    Chen MC (2004) Optimizing machining economics models of turning operations using the scatter search approach. Int J Prod Res 42(13):2611. doi: 10.1080/00207540410001666251 CrossRefGoogle Scholar
  12. 12.
    Saravanan RSRS, Asokan P, Vijayakumar K, Prabhaharan G (2005) Optimization of cutting conditions during continuous finished profile machining using non-traditional techniques. Int J Adv Manuf Technol 26(1–2):30. doi: 10.1007/s00170-003-1938-x CrossRefGoogle Scholar
  13. 13.
    Satishkumar S, Asokan P, Kumanan S (2006) Optimization of depth of cut in multi-pass turning using nontraditional optimization techniques. Int J Adv Manuf Technol 29(3–4):230. doi: 10.1007/s00170-005-2526-z CrossRefGoogle Scholar
  14. 14.
    Sankar R, Asokan P, Saravanan R, Kumanan S, Prabhaharan G (2007) Selection of machining parameters for constrained machining problem using evolutionary computation. Int J Adv Manuf Technol 32(9–10):892. doi: 10.1007/s00170-006-0420-y CrossRefGoogle Scholar
  15. 15.
    Lie Tang RGL, Balakrishnan SN (2008) Parallel turning process parameter optimization based on a novel heuristic approach. J Manuf Sci Eng 130(3):031002. doi: 10.1115/1.2823077 CrossRefGoogle Scholar
  16. 16.
    Bharathi Raja S, Baskar N (2010) Optimization techniques for machining operations: a retrospective research based on various mathematical models. Int J Adv Manuf Technol 48(9–12):1075. doi: 10.1007/s00170-009-2351-x CrossRefGoogle Scholar
  17. 17.
    Costa A, Celano G, Fichera S (2011) Optimization of multi-pass turning economies through a hybrid particle swarm optimization technique. Int J Adv Manuf Technol 53(5–8):421. doi: 10.1007/s00170-010-2861-6 CrossRefGoogle Scholar
  18. 18.
    Wang YC, Chiu YC, Hung YP (2011) Optimization of multi-task turning operations under minimal tool waste consideration. Robot Comput-Integr Manuf 27(4):674. doi: 10.1016/j.rcim.2010.12.003 CrossRefGoogle Scholar
  19. 19.
    Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inf Sci 210:81. doi: 10.1016/j.ins.2012.03.005 CrossRefGoogle Scholar
  20. 20.
    Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433. doi: 10.1016/j.asoc.2012.01.012 CrossRefGoogle Scholar
  21. 21.
    Ganesan H, Mohankumar G (2013) Optimization of machining techniques in CNC turning centre using genetic algorithm. Arabian J Sci Eng 38(6):1529. doi: 10.1007/s13369-013-0539-8 CrossRefGoogle Scholar
  22. 22.
    Yusup N, Zain AM, Hashim SZM (2012) Evolutionary techniques in optimizing machining parameters: review and recent applications (2007 - 2011). Expert Syst Appl 39(10):9909. doi: 10.1016/j.eswa.2012.02.109 CrossRefGoogle Scholar
  23. 23.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, 1995. Proceedings, vol 4, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  24. 24.
    Kennedy J, Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Evolutionary computation series. Morgan Kaufmann PublishersGoogle Scholar
  25. 25.
    Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech. Rep. TR06. Erciyes UniversityGoogle Scholar
  26. 26.
    Karaboga D, Akay B, Ozturk C (2007) In: Torra V, Narukawa Y, Yoshida Y (eds) Modeling decisions for artificial intelligence, lecture notes in computer science, vol 4617. Springer Berlin Heidelberg, pp 318–329. doi: 10.1007/978-3-540-73729-2_30
  27. 27.
    Childs T, Maekawa K Metal machining: theory and applications. Referex Engineering (Arnold, 2000)Google Scholar
  28. 28.
    Wong TT, Luk WS, Heng PA (1997) Sampling with Hammersley and Halton points. J Graph Tools 2(2):9. doi: 10.1080/10867651.1997.10487471 CrossRefGoogle Scholar
  29. 29.
    Van Den Bergh F (2002) An analysis of particle swarm optimizers. Ph.D. thesis, University of Pretoria, Pretoria, South Africa. AAI0804353Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • M. Sortino
    • 1
  • S. Belfio
    • 1
  • G. Totis
    • 1
  • L. Di Gaspero
    • 1
  • M. Nali
    • 1
  1. 1.Department of Electrical, Management and Mechanical Engineering DIEGMUniversity of UdineUdineItaly

Personalised recommendations