A median run length-based double-sampling \( \overline{X} \) chart with estimated parameters for minimizing the average sample size

  • W. L. Teoh
  • Michael B. C. Khoo
  • Philippe Castagliola
  • S. Chakraborti
ORIGINAL ARTICLE

Abstract

The existing control charts with estimated parameters have been widely studied from the perspective of the average run length (ARL). However, when parameters are estimated, the shape and the skewness of the run length distribution change with the magnitude of the mean shift, the number of phase I samples and sample sizes. Therefore, in this paper, we argue that the median run length (MRL) and the average sample size (ASS) have several advantages over the traditional ARL to effectively evaluate the performance of the double-sampling (DS) \( \overline{X} \) chart with estimated parameters. Precisely, by correctly accounting for parameter estimation and using the expectation by conditioning approach, we establish a theoretical method for the run length of the DS \( \overline{X} \) chart in phase II process monitoring. Also, the MRL-based DS \( \overline{X} \) chart with estimated parameters is optimally designed using an optimization algorithm, aiming at minimizing the in-control ASS by subjecting to both the desired in-control and out-of-control MRLs. Most importantly, the proposed optimal MRL-based chart with estimated parameters not only employs a smaller sample size on average, when the process is in-control, but also has a lower false-alarm rate and provides a clearer interpretation to practitioners. The proposed optimal chart with estimated parameters is illustrated with some real data from a tape-and-reel packing process used in a manufacturing company.

Keywords

Average run length Average sample size Double-sampling \( \overline{X} \) chart Estimated parameters Median run length Optimal design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castagliola P, Celano G, Fichera S, Nenes G (2013) The variable sample size t control chart for monitoring short production runs. Int J Adv Manuf Technol. 66(9–12):1353–1366Google Scholar
  2. 2.
    Kazemzadeh RB, Karbasian M, Babakhani MA (2013) An EWMA t chart with variable sampling intervals for monitoring the process mean. Int J Adv Manuf Technol 66(1–4):125–139CrossRefGoogle Scholar
  3. 3.
    Zhang J, Li Z, Wang Z (2012) A new adaptive control chart for monitoring process mean and variability. Int J Adv Manuf Technol 60(9–12):1031–1038CrossRefGoogle Scholar
  4. 4.
    Daudin JJ (1992) Double sampling \( \overline{X} \) charts. J Qual Technol 24(2):78–87Google Scholar
  5. 5.
    Costa AFB (1994) \( \overline{X} \) charts with variable sample size. J Qual Technol 26(3):155–163Google Scholar
  6. 6.
    He D, Grigoryan A (2002) Construction of double sampling S-control charts for agile manufacturing. Qual Reliab Eng Int 18(4):343–355CrossRefGoogle Scholar
  7. 7.
    Torng CC, Lee PH, Liao HS, Liao NY (2009) An economic design of double sampling \( \overline{X} \) charts for correlated data using genetic algorithms. Expert Syst Appl 36(10):12621–12626CrossRefGoogle Scholar
  8. 8.
    He D, Grigoryan A, Sigh M (2002) Design of double- and triple-sampling \( \overline{X} \) control charts using genetic algorithms. Int J Prod Res 40(6):1387–1404CrossRefMATHGoogle Scholar
  9. 9.
    Torng CC, Tseng CC, Lee PH (2010) Non-normality and combined double sampling and variable sampling interval \( \overline{X} \) control charts. J Appl Stat 37(6):955–967MathSciNetCrossRefGoogle Scholar
  10. 10.
    Costa AFB, Machado MAG (2011) Variable parameter and double sampling \( \overline{X} \) charts in the presence of correlation: the Markov chain approach. Int J Prod Econ 130(2):224–229CrossRefGoogle Scholar
  11. 11.
    Khoo MBC, Lee HC, Wu Z, Chen CH, Castagliola P (2011) A synthetic double sampling control chart for the process mean. IIE Trans 43(1):23–38CrossRefGoogle Scholar
  12. 12.
    Lee PH, Torng CC, Liao LF (2012) An economic design of combined double sampling and variable sampling interval \( \overline{X} \) control chart. Int J Prod Econ 138(1):102–106CrossRefGoogle Scholar
  13. 13.
    He D, Grigoryan A (2003) An improved double sampling S chart. Int J Prod Res 41(12):2663–2679CrossRefMATHGoogle Scholar
  14. 14.
    Lee PH, Chang YC, Torng CC (2012) A design of S control charts with a combined double sampling and variable sampling interval scheme. Commun Stat Theory Methods 41(1):153–165CrossRefMATHGoogle Scholar
  15. 15.
    Lee PH, Torng CC, Wu JC, Tseng CC (2010) The effectiveness study of double sampling S charts application on destructive testing process. Int J Prod Dev 12(3/4):324–335CrossRefGoogle Scholar
  16. 16.
    Calzada ME, Scariano SM (2007) Joint monitoring of the mean and variance of combined control charts with estimated parameters. Commun Stat Simul Comput 36(5):1115–1134MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Testik MC (2007) Conditional and marginal performance of the Poisson CUSUM control chart with parameter estimation. Int J Prod Res 23(1):5621–5638CrossRefMATHGoogle Scholar
  18. 18.
    Capizzi G, Masarotto G (2010) Combined Shewhart-EWMA control charts with estimated parameters. J Stat Comput Simul 80(7):793–807MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bischak DP, Trietsch D (2007) The rate of false signals in \( \overline{X} \) control charts with estimated limits. J Qual Technol 39(1):54–65Google Scholar
  20. 20.
    Maravelakis PE, Castagliola P (2009) An EWMA chart for monitoring the process standard deviation when parameters are estimated. Comput Stat Data Anal 53(7):2653–2664MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Castagliola P, Maravelakis PE (2011) A CUSUM control chart for monitoring the variance when parameters are estimated. J Stat Plan Inference 141(4):1463–1478MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zhang Y, Castagliola P, Wu Z, Khoo MBC (2011) The synthetic \( \overline{X} \) chart with estimated parameters. IIE Trans 43(9):676–687CrossRefGoogle Scholar
  23. 23.
    Castagliola P, Zhang Y, Costa A, Maravelakis P (2012) The variable sample size \( \overline{X} \) chart with estimated parameters. Qual Reliab Eng Int 28(7):687–699CrossRefGoogle Scholar
  24. 24.
    Jensen WA, Jones-Farmer LA, Champ CW, Woodall WH (2006) Effects of parameter estimation on control chart properties: a literature review. J Qual Technol 38(4):349–364Google Scholar
  25. 25.
    Jones LA, Champ CW, Rigdon SE (2004) The run length distribution of the CUSUM with estimated parameters. J Qual Technol 36(1):95–108Google Scholar
  26. 26.
    Montgomery DC (2009) Statistical quality control: a modern introduction, 6th edn. Wiley, New YorkMATHGoogle Scholar
  27. 27.
    Chakraborti S (2007) Run length distribution and percentiles: the Shewhart \( \overline{X} \) chart with unknown parameters. Qual Eng 19(2):119–127CrossRefGoogle Scholar
  28. 28.
    Palm AC (1990) Tables of run length percentiles for determining the sensitivity of Shewhart control charts for average with supplementary runs rules. J Qual Technol 22(4):289–298Google Scholar
  29. 29.
    Gan FF (1993) An optimal design of EWMA control charts based on median run length. J Stat Comput Simul 45(3–4):169–184CrossRefMATHGoogle Scholar
  30. 30.
    Golosnoy V, Schmid W (2007) EWMA control charts for monitoring optimal portfolio weights. Sequ Anal 26(2):195–224MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Khoo MBC, Wong VH, Wu Z, Castagliola P (2012) Optimal design of the synthetic chart for the process mean based on median run length. IIE Trans 44(9):765–779CrossRefGoogle Scholar
  32. 32.
    Low CK, Khoo MBC, Teoh WL, Wu Z (2012) The revised m-of-k runs rule based on median run length. Commun Stat Simul Comput 41(8):1463–1477MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Ryan TP (2000) Statistical methods for quality improvement, 2nd edn. Wiley, New YorkMATHGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • W. L. Teoh
    • 1
  • Michael B. C. Khoo
    • 2
  • Philippe Castagliola
    • 3
  • S. Chakraborti
    • 4
  1. 1.Department of Physical and Mathematical Science, Faculty of ScienceUniversiti Tunku Abdul RahmanKamparMalaysia
  2. 2.School of Mathematical SciencesUniversiti Sains MalaysiaPenangMalaysia
  3. 3.Department of Quality and LogisticsLUNAM Université, Université de Nantes and IRCCyN UMR CNRS 6597CarquefouFrance
  4. 4.Department of Information Systems, Statistics, and Management ScienceUniversity of AlabamaTuscaloosaUSA

Personalised recommendations