Advertisement

Evaluation of geometric tolerances and generation of variational part representatives for tolerance analysis

  • Benjamin Schleich
  • Sandro Wartzack
ORIGINAL ARTICLE

Abstract

Managing geometric part deviations to control their effects on the product function and quality is an important task in the design of physical artefacts. Consequently, computer-aided tolerancing tools are widely applied in industrial practice to evaluate the effects of geometric part deviations on assembly and functional requirements. However, most established models and approaches for the representation of geometric part deviations, geometric tolerances, and geometric requirements in such tools lack of a realistic consideration of form deviations and are often not conform to international standards for the geometric product specification and verification. With the aim to provide a further step towards a computer-aided tolerancing theory employing variational part representatives in discrete geometry, approaches for the generation of such representatives, which conform to pre-defined tolerance specifications, are presented. These approaches ground on algorithms for the evaluation of geometric tolerances from point clouds and are essential for the tolerance analysis employing point based models. We highlight the usefulness of the presented methods for the tolerance analysis in a typical case study.

Keywords

Tolerance design Computer-aided tolerancing Geometric tolerances Variational model Inspection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ameta G, Serge S, Giordano M (2011) Comparison of spatial math models for tolerance analysis: tolerance-maps, deviation domain, and TTRS. J Comput Inf Sci Eng 11(2):021004 (8 pages)CrossRefGoogle Scholar
  2. 2.
    Anwer N, Ballu A, Mathieu L (2013) The skin model, a comprehensive geometric model for engineering design. CIRP Ann Manuf Technol 62(1):143–146CrossRefGoogle Scholar
  3. 3.
    Anwer N, Schleich B, Mathieu L, Wartzack S (2014) From solid modelling to skin model shapes: shifting paradigms in computer-aided tolerancing. CIRP Ann Manuf Technol 63(1):137–140CrossRefGoogle Scholar
  4. 4.
    Armillotta A (2013) A method for computer-aided specification of geometric tolerances. Comput Aided Des 45(12):1604–1616CrossRefGoogle Scholar
  5. 5.
    Barber CB, Dobkin DP, Huhdanpaa H (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 4:469–483MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bo C, Yang Z, Wang L, Chen H (2013) A comparison of tolerance analysis models for assembly. Int J Adv Manuf Technol 68(1-4):739–754CrossRefGoogle Scholar
  7. 7.
    Bourdet P, Mathieu L, Lartigue C, Ballu A (1996) The concept of the small displacement torsor in metrology. In: Ciarlini P, Cox MG, Pavese F, Richter D (eds) Advanced Mathematical Tools in Metrology II. World Scientific Publishing Company, pp 110–122Google Scholar
  8. 8.
    Cao Y, Zhang H, Mao J, Xu X, Yang J (2011) Study on tolerance modeling of complex surface. Int J Adv Manuf Technol 53(9-12):1183–1188CrossRefGoogle Scholar
  9. 9.
    Chase K, Parkinson A (1991) A survey of research in the application of tolerance analysis to the design of mechanical assemblies. Res Eng Des 3(1):23–37CrossRefGoogle Scholar
  10. 10.
    Chase KW, Gao J, Magleby SP, Sorensen CD (1996) Including geometric feature variations in tolerance analysis of mechanical assemblies. IIE Trans 28:795–807Google Scholar
  11. 11.
    Chen H, Jin S, Li Z, Lai X (2014) A comprehensive study of three dimensional tolerance analysis methods. Comput Aided Des 53:1–13CrossRefGoogle Scholar
  12. 12.
    Cho S, Kim JY (2012) Straightness and flatness evaluation using data envelopment analysis. Int J Adv Manuf Technol 63(5-8):731–740CrossRefGoogle Scholar
  13. 13.
    Dantan JY, Ballu A, Mathieu L (2008) Geometrical product specifications—model for product life cycle. Comput Aided Des 40(4):493–501CrossRefGoogle Scholar
  14. 14.
    Davidson JK, Mujezinović A, Shah JJ (2002) A new mathematical model for geometric tolerances as applied to round faces. J Mech Des 124(4):609–622CrossRefGoogle Scholar
  15. 15.
    Desrochers A, Clément A (1994) A dimensioning and tolerancing assistance model for CAD/CAM systems. Int J Adv Manuf Technol 9(6):352–361CrossRefGoogle Scholar
  16. 16.
    Desrochers A, Rivière A (1997) A matrix approach to the representation of tolerance zones and clearances. Int J Adv Manuf Technol 13(9):630–636CrossRefGoogle Scholar
  17. 17.
    Franciosa P, Gerbino S, Patalano S (2010) Variational modeling and assembly constraints in tolerance analysis of rigid part assemblies: planar and cylindrical features. The International Journal of Advanced Manufacturing Technology 49(1-4):239–251CrossRefGoogle Scholar
  18. 18.
    Franciosa P, Gerbino S, Patalano S (2011) Simulation of variational compliant assemblies with shape errors based on morphing mesh approach. Int J Adv Manuf Technol 53(1-4):47–61CrossRefGoogle Scholar
  19. 19.
    Gao J, Chase K, Magleby S (1998) Generalized 3-d tolerance analysis of mechanical assemblies with small kinematic adjustments. IIE Trans 30(4):367–377Google Scholar
  20. 20.
    Giordano M, Samper S, Petit J (2007) Tolerance analysis and synthesis by means of deviation domains, Axi-symmetric cases. In: Davidson J. (ed) Models for computer aided tolerancing in design and manufacturing, Netherlands, pp 85–94Google Scholar
  21. 21.
    Grandjean J, Ledoux Y, Samper S (2013) On the role of form defects in assemblies subject to local deformations and mechanical loads. Int J Adv Manuf Technol 65(9-12):1769–1778CrossRefGoogle Scholar
  22. 22.
    Guenther A (2011) Interpretation of bevel gear topography measurements. CIRP Ann Manuf Technol 60(1):551–554CrossRefGoogle Scholar
  23. 23.
    Havel J, Herout A (2010) Yet faster ray-triangle intersection (Using SSE4). IEEE Trans Vis Comput Graph 16(3):434–438CrossRefGoogle Scholar
  24. 24.
    Hong Y, Chang T (2002) A comprehensive review of tolerancing research. Int J Prod Res 40(11):2425–2459zbMATHCrossRefGoogle Scholar
  25. 25.
    ISO/TC213: ISO 286-1:2010: (2010) Geometrical product specifications (GPS) – ISO code system for tolerances on linear sizes- Part 1: Basis of tolerances, deviations and fits. StandardGoogle Scholar
  26. 26.
    ISO/TC213: ISO 1101:2012: (2012) Geometrical product specifications (GPS)—Geometrical tolerancing –Tolerances of form, orientation, location and run-out. StandardGoogle Scholar
  27. 27.
    ISO/TC213: ISO 5459:2011: (2011) Geometrical product specifications (GPS) Geometrical tolerancing – Datums and datum systems. StandardGoogle Scholar
  28. 28.
    ISO/TC213: ISO 14405-1:2010: (2010) Geometrical product specifications (GPS) Dimensional tolerancing – Part 1: Linear sizes. StandardGoogle Scholar
  29. 29.
    ISO/TC213: ISO 17450-1:2011: (2011) Geometrical product specifications (GPS) General concepts – Part 1: Model for geometrical specification and verification. StandardGoogle Scholar
  30. 30.
    ISO/TC213: ISO 17450-2:2012: (2012) Geometrical product specifications (GPS) General concepts – Part 2: Basic tenets, specifications, operators, uncertainties and ambiguities.StandardGoogle Scholar
  31. 31.
    Johannesson H, Söderberg R (2000) Structure and matrix models for tolerance analysis from configuration to detail design. Res Eng Des 12(2):112–125CrossRefGoogle Scholar
  32. 32.
    Lindau B, Andersson A, Lindkvist L, Söderberg R (2012) Using forming simulation results in virtual assembly analysis Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, Houston, Texas, USA., vol. Volume 3: Design, Materials and Manufacturing, Parts A, B, and C, ASME, pp 31–38Google Scholar
  33. 33.
    Lorin S, Lindkvist L, Söderberg R (2012) Simulating Part and Assembly Variation for Injection Molded Parts. In: ASME (ed) Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, USA, vol. Volume 5: 6th International Conference on Micro- and Nanosystems; 17th Design for Manufacturing and the Life Cycle Conference, pp 487–496Google Scholar
  34. 34.
    Marziale M, Polini W (2009) A review of two models for tolerance analysis of an assembly: vector loop and matrix. Int J Adv Manuf Technol 43(11-12):1106–1123CrossRefGoogle Scholar
  35. 35.
    Marziale M, Polini W (2011) A review of two models for tolerance analysis of an assembly: Jacobian and torsor. Int J Comput Integr Manuf 24(1):74–86CrossRefGoogle Scholar
  36. 36.
    Mathieu L, Ballu A (2007) A model for a coherent and complete tolerancing process. In: Davidson J. (ed) Models for computer aided tolerancing in design and manufacturing. Springer, Netherlands, pp 35–44CrossRefGoogle Scholar
  37. 37.
    Morse EP, Srinivasan V (2013) Size tolerancing revisited: a basic notion and its evolution in standards. Proc Inst Mech Eng, Part B:J Eng Manuf 227(5):662–671CrossRefGoogle Scholar
  38. 38.
    Ngoi B, Ong C (1998) Product and process dimensioning and tolerancing techniques. A state-of-the-art review. Int J Adv Manuf Technol 14(12):910–917CrossRefGoogle Scholar
  39. 39.
    Nigam SD, Turner JU (1995) Review of statistical approaches to tolerance analysis. Comput Aided Des 27(1):6–15zbMATHCrossRefGoogle Scholar
  40. 40.
    Ohtake Y, Belyaev A, Bogaevski I (2001) Mesh regularization and adaptive smoothing. Comput Aided Des 33(11):789–800CrossRefGoogle Scholar
  41. 41.
    Pottmann H, Leopoldseder S, Hofer M (2002) Simultaneous registration of multiple views of a 3D object. In: Intl. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, Part 3A, Commission III, pp. 265–270Google Scholar
  42. 42.
    Pottmann H, Leopoldseder S, Hofer M (2004) Registration without ICP. Comput Vis Image Underst 95(1):54–71CrossRefGoogle Scholar
  43. 43.
    Prisco U, Giorleo G (2002) Overview of current CAT systems. Int Comput Aided Eng 9:373–387Google Scholar
  44. 44.
    Qureshi AJ, Dantan JY, Sabri V, Beaucaire P, Gayton N (2012) A statistical tolerance analysis approach for over-constrained mechanism based on optimization and Monte Carlo simulation. Comput Aided Des 44(2):132–142CrossRefGoogle Scholar
  45. 45.
    Requicha A AG (1983) Toward a theory of geometric tolerancing. Int J Robot Res 2(45):45–60CrossRefGoogle Scholar
  46. 46.
    Roy U (1995) Computational methodologies for evaluating form and positional tolerances in a computer integrated manufacturing system. Int J Adv Manuf Technol 10(2):110–117CrossRefGoogle Scholar
  47. 47.
    Roy U, Li B (1998) Representation and interpretation of geometric tolerances for polyhedral objects—I. Form tolerances. Comput Aided Des 30(2):151–161CrossRefGoogle Scholar
  48. 48.
    Roy U, Li B (1999) Representation and interpretation of geometric tolerances for polyhedral objects. II.: Size, orientation and position tolerances. Comput Aided Des 31(4):273–285zbMATHCrossRefGoogle Scholar
  49. 49.
    Schleich B, Anwer N, Mathieu L, Wartzack S (2015) Contact and mobility simulation for mechanical assemblies based on skin model shapes. J Comput Inf Sci Eng. doi: 10.1115/1.4029051
  50. 50.
    Schleich B, Anwer N, Mathieu L, Wartzack S (2014) Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering. Comput Aided Des 50:1–15CrossRefGoogle Scholar
  51. 51.
    Schleich B, Anwer N, Zhu Z, Qiao L, Mathieu L, Wartzack S (2014) A comparative study on tolerance analysis approaches. In: Howard T-J, Eifler T (eds) Proceedings of the International Symposium on Robust Design—ISoRD14. Copenhagen, Denmark, pp 29–39Google Scholar
  52. 52.
    Schleich B, Walter M, Wartzack S, Anwer N, Mathieu L (2012). In: ASME (ed) Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, Nantes, ESDA2012-82204, pp 567–576Google Scholar
  53. 53.
    Schleich B, Wartzack S (2013) The implications of the skin model concept for computer aided tolerancing. In: Abramovici M, Stark R (eds) Smart product engineering, lecture notes in production engineering. Springer Berlin Heidelberg, pp 573–-582Google Scholar
  54. 54.
    Schleich B, Wartzack S (2014) A discrete geometry approach for tolerance analysis of mechanism. Mech Mach Theory 77:148–163CrossRefGoogle Scholar
  55. 55.
    Shah JJ, Ameta G, Shen Z, Davidson J (2007) Navigating the tolerance analysis maze. Comput Aided Des Appl 4(5):705–718Google Scholar
  56. 56.
    Shan A, Roth RN, Wilson RJ (1999) A new approach to statistical geometrical tolerance analysis. Int J Adv Manuf Technol 15(3):222–230CrossRefGoogle Scholar
  57. 57.
    Shen Z, Ameta G, Shah JJ, Davidson JK (2005) A comparative study of tolerance analysis methods. J Comput Inf Sci Eng 5(3):247–256CrossRefGoogle Scholar
  58. 58.
    Srinivasan V (2006) Computational metrology for the design and manufacture of product geometry: a classification and synthesis. J Comput Inf Sci Eng 7(1):3–9CrossRefGoogle Scholar
  59. 59.
    Teissandier D, Delos V (2011) Algorithm to calculate the Minkowski sums of 3-polytopes based on normal fans. Comput Aided Des 43(12):1567–1576CrossRefGoogle Scholar
  60. 60.
    Thornton AC (1999) A mathematical framework for the key characteristic process. Res Eng Des 11(3):145–157MathSciNetCrossRefGoogle Scholar
  61. 61.
    Turner J, Wozny M (1987) Tolerances in computer-aided geometric design. Vis Comput 3(4):214–226CrossRefGoogle Scholar
  62. 62.
    Whitney DE, Gilbert OL, Jastrzebski M (1994) Representation of geometric variations using matrix transforms for statistical tolerance analysis in assemblies. RRes Eng Des 6(4):191–210CrossRefGoogle Scholar
  63. 63.
    Wirtz A (1988) Vektorielle Tolerierung zur Qualitätssteuerung in der mechanischen Fertigung. CIRP Ann –Manuf Technol 37(1):493–498CrossRefGoogle Scholar
  64. 64.
    Wittwer JW, Chase KW, Howell LL (2004) The direct linearization method applied to position error in kinematic linkages. Mech Mach Theory 39(7):681–693zbMATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Zhang M, Anwer N, Stockinger A, Mathieu L, Wartzack S (2013) Discrete shape modeling for skin model representation. Proc Inst Mech Eng Part B J Eng Manuf 227(5):672–680CrossRefGoogle Scholar
  66. 66.
    Zhang X, Jiang X, Forbes AB, Minh HD, Scott PD (2013) Evaluating the form errors of spheres, cylinders and cones using the primal-dual interior point method. Proc Inst Mech Eng Part B J Eng Manuf 227(5):720–725CrossRefGoogle Scholar
  67. 67.
    Ziegler P, Wartzack S (2015) Sensitivity analysis of features in tolerancing based on constraint function level sets. Reliab Eng Syst Saf 134:324–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.Chair of Engineering Design KTmfkFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations