A predictive hybrid force modeling in turning: application to stainless steel dry machining with a coated groove tool

  • Christophe CzarnotaEmail author
  • Fousseny Koné
  • Badis Haddag
  • Mohammed Nouari


This paper presents an hybrid numerical/analytical modeling for estimation of cutting forces in machining process. The approach dedicated to predict 3D cutting forces are based on a chip flow direction modeling coupled with plane strain numerical simulations. An equivalent uncut chip thickness, deduced from the chip flow direction, is used as an input parameter in the 2D FEM. Resulting 2D numerical cutting forces are thus obtained from FEM, and knowing the chip flow direction, tangential, radial, and feed forces are calculated. Cutting forces derived from the proposed approach are compared to experiments when machining 304L austenitic steel with a groove-coated tool under dry condition. To take into account the complex groove geometry, the real shape of the cutting tool used in experiments has been captured by means of a digitization procedure, and thus implemented in 2D plane strain numerical simulations. The approach is applied to the case of stainless steel turning over a great range of cutting conditions. Two chip flow direction modelings are considered for the cutting force decomposition where it is shown the good predictive capabilities of the proposed approach.


Cutting force Hybrid modeling Numerical simulation Turning 304L Coated groove tools 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Merchant ME (1944) Basic mechanics of the metal cutting process. J App Mech 11:A168–A175Google Scholar
  2. 2.
    Yang K, Liang Y-C, Zheng K-N, Bai Q-S, ChenW-Q (2011) Tool edge radius effect on cutting temperature in micro-end-milling process. Int J Adv Manuf Technol 52:905–912Google Scholar
  3. 3.
    Adetoro OB, Wen PH (2010) Prediction of mechanistic cutting force coefficients using ALE formulation. Int J Adv Manufact Technol 46:79–90Google Scholar
  4. 4.
    Stabler GV (1951) The fundamental geometry of cutting tools. Proc Inst Mech Eng 165:14–21Google Scholar
  5. 5.
    Stabler GV (1964) The chip flow law and its consequences. In: 5th international machine tool design research conference, Birmingham, UK, pp 243–251Google Scholar
  6. 6.
    Russell JK, Brown RH (1966) The measurement of the chip flow direction. Int J Mach Tool Des Res 6:129–138CrossRefGoogle Scholar
  7. 7.
    Colwell LV (1954) Predicting the angle of chip flow for single-point cutting tools. Trans ASME 76:199–204Google Scholar
  8. 8.
    Wang J, Mathew P (1995) Development of a general tool model for turning operations based on a variable flow stress theory. Int J Mach Tools Manufact 35(1):71–90CrossRefGoogle Scholar
  9. 9.
    Wang J (2001) Development of a chip flow model for turning operations. Int J Mach Tools Manufact 41:1265–1274CrossRefGoogle Scholar
  10. 10.
    Jawahir IS, Wang X (2007) Development of hybrid predictive models and optimization techniques for machining operations. J Mater Process Technol 185:46–59CrossRefGoogle Scholar
  11. 11.
    Jawahir IS, Ghosh R, Balaji AJ, Li PX (2000) Predictability of tool failure modes in turning with complex grooved tools using the equivalent toolface (ET) model. Wear 244:94–103Google Scholar
  12. 12.
    Fang N, Wu Q (2009) A comparative study of the cutting forces in high speed machining of Ti-6Al-4V and Inconel 718 with a round cutting edge tool. J Mater Process Technol 209:4385–4389Google Scholar
  13. 13.
    Koné F, Czarnota C, Haddag B, Nouari M (2013) Modeling of velocity-dependent chip flow angle and experimental analysis when machining 304l austenitic stainless steel with groove coated-carbide tools. J Mater Process Technol 213:1166–1178CrossRefGoogle Scholar
  14. 14.
    Deshayes L (2007) Analysis of an equivalent tool face for the cutting speed range prediction of complex grooved tools. J Mater Process Technol 190:251–262CrossRefGoogle Scholar
  15. 15.
    Pereira RBD, Braga DU, Nevez FO, da Silva ASC (2013) Analysis of surface roughness and cutting force when turning AISI 1045 steel with grooved tools through Scott-Knott method. Int J Adv Manufact Technol 69:1431–1441CrossRefGoogle Scholar
  16. 16.
    Yen YC, Söhner J, Lilly B, Altan T (2004) Estimation of tool wear in orthogonal cutting using the finite element analysis. J Mater Process Technol 146:82–91CrossRefGoogle Scholar
  17. 17.
    Koné F, Czarnota C, Haddag B, Nouari M (2011) Finite element modeling of the thermomechanical behavior of coatings under extreme contact loading in dry machining. Surf Coat Technol 205:3559–3566CrossRefGoogle Scholar
  18. 18.
    Soo SL, Dewes RC, Aspinwall DK (2010) 3D FE modelling of high-speed ball nose end milling. Int J Adv Manufact Technol 50:871–882CrossRefGoogle Scholar
  19. 19.
    Özel T (2009) Computational modelling of 3D turning: Influence of edge micro-geometry on forces, stresses, friction and tool wear in PcBN tooling. J Mater Process Technol 209:5167–5177Google Scholar
  20. 20.
    Li B, Wang X, Hu Y, Li C (2011) Analytical prediction of cutting forces in orthogonal cutting using unequal division shear-zone model. Int J Adv Manufact Technol 54:431–443CrossRefMathSciNetGoogle Scholar
  21. 21.
    Sun Y, Sun J, Li J, Li W, Feng B (2013) Modeling of cutting force under the tool flank wear effect in end milling Ti-6Al-4V with solid carbide tool. Int J Adv Manufact Technol 69:2545–2553Google Scholar
  22. 22.
    Akca D, Remondino F, Nov´ak D, Hanusch T, Schrotter G, Gruen A (2007) Performance evaluation of a coded structured light system for cultural heritage applications. In: Videometrics IX, pp 29–30Google Scholar
  23. 23.
    Salvi J, Pagès J, Batlle J (2007) Pattern codification strategies in structured light systems. Pattern Recogn 37:827–849CrossRefGoogle Scholar
  24. 24.
    Corporation Scientific Technologies (2008) DEFORM 2D, V9.1 User’s manual. Columbus, OHGoogle Scholar
  25. 25.
    Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, The Hague, NL, pp 541–547Google Scholar
  26. 26.
    Afazov SM, Ratchev SM, Segal J (2010) Modelling and simulation of micro-milling cutting forces. J Mater Process Technol 210:2154–2162CrossRefGoogle Scholar
  27. 27.
    Seethaler RJ, Yellowley I (1997) An upper-bound cutting model for oblique cutting tools with a nose radius. Int J Mach Tools Manufact 37:119–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Christophe Czarnota
    • 1
    Email author
  • Fousseny Koné
    • 2
  • Badis Haddag
    • 3
  • Mohammed Nouari
    • 3
  1. 1.Université de Lorraine Laboratoire d’Étude des Microstructures et de Mécanique des Matériaux LEM 3 - UMR CNRS 7239Metz–Cedex 01France
  2. 2.Université de Cocody / Institut Pédagogique National de l’Enseignement Technique et Professionnel IPNETPAbidjan 08Côte d’Ivoire
  3. 3.Université de Lorraine Laboratoire d’Énergétique et de Mécanique Théorique et Appliquée LEMTA - UMR CNRS 7563 GIP-InSICSaint-Dié-des-VosgesFrance

Personalised recommendations