Advertisement

Determining influence of ultrasonic-assisted friction stir welding parameters on mechanical and tribological properties of AA6061 joints

  • Masoud Ahmadnia
  • Amin Seidanloo
  • Reza Teimouri
  • Yaser RostamiyanEmail author
  • Khadijeh Ghasemi Titrashi
ORIGINAL ARTICLE

Abstract

In recent years, ultrasonic vibration has been integrated with various types of manufacturing processes, and researchers reported enhancement of the process efficiency while applying this method. In the present study, a vertical high-frequency vibration is applied on friction stir tool to determine its effects on tensile strength and formability (as characteristics of mechanical properties) as well as surface quality and sliding wear rate (as characteristics of tribological properties) of the welded AA6061. L9 Taguchi design was used to conduct the experiments and analyze effect of factors on mentioned quality characteristics. The four major parameters are ultrasonic power, tool rotary speed, traverse speed, and axial force. Also, the optimal welding conditions to maximize the tensile strength and formability and minimize the surface roughness and sliding wear rate were identified using grey relational analysis and reported here. Results indicated that the vibration power is a most significant factor having positive influence on both mechanical and tribological properties of welded samples.

Keywords

Frictions stir welding Ultrasonic vibration Mechanical properties Tribological properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rajakumar S, Muralidharan C, Balbasubramanian V (2011) Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061-T6 aluminum alloy joints. Mater Des 32:2878–2890CrossRefGoogle Scholar
  2. 2.
    Elangovan K, Balasubramanian V (2008) Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 38:285–295CrossRefGoogle Scholar
  3. 3.
    Elangovan K, Balasubramanian V, Babu S (2009) Predicting tensile strength of friction stir welded AA6061 aluminum alloy joints. Mater Des 30:188–193CrossRefGoogle Scholar
  4. 4.
    Zeng WM, Wu HL, Zhang J (2006) Effect of tool wear on microstructure, mechanical properties and acoustic emission of friction stir welded 6061 Al alloys. Acta Metall Sin 19(1):9–19CrossRefGoogle Scholar
  5. 5.
    Lee WB, Yeon YM, Jung SB (2004) Mechanical properties related to micro structural variation of 6061 Al alloy joints by friction stir welding. Mater Trans 45(5):1700–1705CrossRefGoogle Scholar
  6. 6.
    Krishnan KN (2002) The effect of post weld heat treatment on the properties of 6061 friction stir welded joints. J Mater Sci 37:473–480CrossRefGoogle Scholar
  7. 7.
    Sato YS, Sugiura Y, Shoji Y, Park SHC, Kokawa H, Ikeda K (2004) Post-weld formability of friction stir welded Al alloy 5052. Mater Sci Eng A 369:138–143CrossRefGoogle Scholar
  8. 8.
    Hirta T, Oguri T, Hagino H, Tanaka T, Chung SW, Takigawa Y, Higashi K (2007) Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy. Mater Sci Eng A 456:344–349CrossRefGoogle Scholar
  9. 9.
    Kim D, Lee W, Kim J, Kim C, Chung K (2010) Formability evaluation of friction stir welded 6111-T4 sheet with respect to joining material direction. Int J Mech Sci Eng 52:612–625CrossRefGoogle Scholar
  10. 10.
    Ramalu PJ, Narayanan RG, Kailas SV (2013) Forming limit investigation of friction stir welded sheets: influence of shoulder diameter and plunge depth. Int J Adv Manuf Technol 69:2757–2772CrossRefGoogle Scholar
  11. 11.
    Teimouri R, Baseri H (2013) Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int J Adv Manuf Technol 67:1371–1384CrossRefGoogle Scholar
  12. 12.
    Skoczypiec S (2011) Research on ultrasonically assisted electrochemical machining process. Int J Adv Manuf Technol 52:565–574CrossRefGoogle Scholar
  13. 13.
    Babitsky VL, Kalashnikov AN, Meadows A, Wijesundara AAHP (2003) Ultrasonically assisted turning of aviation materials. J Mater Process Technol 23(1–3):157–167CrossRefGoogle Scholar
  14. 14.
    Amini S, Amiri MR (2014) Study of ultrasonic vibrations’ effect on friction stir welding. Int J Adv Manuf Technol 73(1–4):127–135CrossRefGoogle Scholar
  15. 15.
    Ruilin L, Diqiu H, Loucheng L, Shaoyong Y, Kunyu Y (2014) A study of the temperature field during ultrasonic-assisted friction-stir welding. Int J Adv Manuf Technol 73(1–4):321–327CrossRefGoogle Scholar
  16. 16.
    Rostamiyan Y, Seidnaloo A, Sohrabpoor H, Teimouri R (2014) Experimental studies on ultrasonically assisted friction stir spot welding of AA6061. Arch Civ Mech Eng. doi: 10.1016/j.acme.2014.06.005 Google Scholar
  17. 17.
    Babajanzade S, Behboodi-Jooybari M, Teimouri R, Asgharzade-Ahmadi SGH, Falahati-Naghibi M, Sohrabpoor H (2014) Optimization of friction stir welding process of AA7075 aluminium alloy to achieve desirable mechanical properties using ANFIS models and simulated annealing algorithm. Int J Adv Manuf Technol 69(5–8):1803–1818Google Scholar
  18. 18.
    Karthikeyan R, Balbasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminium alloy using RSM. Int J Adv Manuf Technol 51:173–183CrossRefGoogle Scholar
  19. 19.
    Nascimento F, Santos T, Vilaca P, Miranda RM, Quintino L (2009) Microstructural modification and ductility enhancement of surfaces modified by FSP in aluminium alloys. Mater Sci Eng A 506:16–22CrossRefGoogle Scholar
  20. 20.
    Dieter Georg E (1961) Mechanical metallurgy. McGraw-Hill series, Chap 13: 455–458Google Scholar
  21. 21.
    Heidarzade A, Khodaverdizadeh H, Mahmoudi A, Nazari E (2012) Tensile behaviour of friction stir welded AA 6061-T4 aluminium alloy joints. Mater Des 37:166–173CrossRefGoogle Scholar
  22. 22.
    Heidarzadeh A, Saeid T (2013) Prediction of mechanical properties in friction stir welds of pure copper. Mater Des 52:1077–1087CrossRefGoogle Scholar
  23. 23.
    Bagherian-Azhiri R, Teimouri R, Ghasemi-Baboly M, Leseman Z (2014) Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media. Int J Adv Manuf Technol 71:279–295CrossRefGoogle Scholar
  24. 24.
    Sohrabpoor H, Parsa-Khanghah S, Teimouri R (2014) Investigation of lubricant condition and machining parameters while turning of AISI 4340. Int J Adv Manuf Technol. doi: 10.1007/s00170-014-6395-1 Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Masoud Ahmadnia
    • 1
  • Amin Seidanloo
    • 2
  • Reza Teimouri
    • 3
  • Yaser Rostamiyan
    • 2
    Email author
  • Khadijeh Ghasemi Titrashi
    • 2
  1. 1.Department of Mechanical EngineeringKhajenasir University of TechnologyTehranIran
  2. 2.Department of Mechanical Engineering, Sari BranchIslamic Azad UniversitySariIran
  3. 3.Department of Mechanical EngineeringBabol University of TechnologyBabolIran

Personalised recommendations