Reducing the energy consumption of industrial robots in manufacturing systems

  • Paryanto
  • Matthias Brossog
  • Martin Bornschlegl
  • Jörg Franke


Reducing the energy consumption of industrial robots (IR) that are used in manufacturing systems has become a main focus in the development of green production systems. This is due to the reality that almost all automated manufacturing processes are using IR as the main component. Thus, reducing the energy consumption of IR will automatically reduce operating costs and CO2 emissions. Therefore, a method for reducing the energy consumption of IR in manufacturing systems is desired. Firstly, this paper presents a literature survey of the research in energy consumption analysis of IR that is used in manufacturing processes. The survey found that current research in this field is focused on the development of simulation models of IR that are able to be used to predict its energy consumption. Secondly, a modular model to analyze power consumption and dynamic behavior of IR is developed. Afterward, an experimental investigation is carried out to validate and estimate the accuracy of the model developed. The investigation shows that the developed modular model can be conveniently used to optimize the industrial robot’s operating parameters, which are commonly needed for production planning and at the process optimization stage. In addition, the investigation shows that the process constraints, environment layout, productivity requirement, as well as the robot payload and operating speed are the key factors that must be considered for optimizing the productivity and efficiency of IR.


Energy efficiency Industrial robots Power consumption Manufacturing systems Production planning Operating parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chettibi E, Lehtihet HE, Haddada M, Hanchi S (2004) Minimum cost trajectory planning for industrial robots. Eur J Mech A-Solid 23:703–715CrossRefzbMATHGoogle Scholar
  2. 2.
    Franke J, Kreitlein S, Risch F, Guenther S (2013) Energy-effficient production strategies and technologies for electric drives. IEEE International Conference on Industrial Technology (ICIT). doi: 10.1109/ICIT.2013.6505967
  3. 3.
    Thiede S (2012) Energy efficiency in manufacturing systems. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  4. 4.
    Bornschlegl M, Drechsel M, Kreitlein S, Franke J (2014) Holistic approach to reducing CO2 emissions along the energy-chain (E-chain). In: Wellnitz, et al. (eds) Sustainable automotive technologies 2013. Lecture Notes in Mobility 2014, pp 227–234Google Scholar
  5. 5.
    Engelmann J (2009) Methoden und Werkzeuge zur Planung und Gestaltung energieeffizienter Fabriken. Dessertation, TU ChemnitzGoogle Scholar
  6. 6.
    Popp R, Keller F, Atabay D, et al. (2013) Technische innovationen für die Energieflexible Fabrik. ZWF 108(7–8):556–560Google Scholar
  7. 7.
    Meike M, Ribickis L (2011) Energy efficient use of robotics in the automobile industry. International Conference on Advenced Robotics (ICAR). doi: 10.1109/ICAR.2011.6088567
  8. 8.
    Meike M, Pellicciari M, Berselli G (2013) Energy efficient use of multirobot production lines in the automotive industry: detailed system modeling and optimization. IEEE Trans Autom Sci Eng:1–12. doi: 10.1109/TASE.2013.2285813
  9. 9.
    Field G, Stepanenko Y (1996) Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators. IEEE Int Conf Robot Autom (ICRA) 3:2755–2760. doi: 10.1109/ROBOT.1996.506579 CrossRefGoogle Scholar
  10. 10.
    Park JS (1996) Motion profile planning of repetitive point-to-point control for maximum energy conversion efficiency under acceleration conditions. Mechatronics 6(6):649–663. doi: 10.1016/0957-4158(96)00012-8 CrossRefGoogle Scholar
  11. 11.
    Constantinescu D, Croft EA (2000) Smooth and time-optimal trajectory planning for industrial manipulators along specified paths. J Robotic Syst 17(5):233–249CrossRefzbMATHGoogle Scholar
  12. 12.
    Meike M, Ribickis L (2011) Industrial robot path optimization approach with asynchronous fly-by in joint space. IEEE International Symposium on Industrial Electronics (ISIE). doi: 10.1109/ISIE.2011.5984280
  13. 13.
    Hansen C, Kotlarski J, Ortmaier D (2013) Experimental validation of advanced minimum energy robot trajectory optimization. IEEE International Conference on Advanced Robotics (ICAR): 1–8. doi: 10.1109/ICAR.2013.6766463
  14. 14.
    Hansen C, Kotlarski J, Ortmaier D (2013) Path planning approach for the amplification of electrical energy exchange in multi axis robotic systems. IEEE International Conference on Mechatronics and Automation (ICMA):44–50. doi: 10.1109/ICMA.2013.6617891
  15. 15.
    Paryanto, Merhof J, Brossog M, Fischer C (2013) An integrated simulation approach to the development of assembly system components. Adv Mater Res 769:19–26. doi: 10.4028/ CrossRefGoogle Scholar
  16. 16.
    Mohammed A, Schmidt B, Wang L, Gao L (2014) Minimising energy consumption for robot arm movement. International Conference on Digital Enterprise Technology (DET). doi: 10.1016/j.procir.2014.10.055
  17. 17.
    Müller A (2004) Energy optimal control of serial manipulators avoiding collisions. International Conference on Mechatronics (ICM). doi: 10.1109/ICMECH.2004.1364455
  18. 18.
    Gregory J, Olivares A, Staffetti E (2012) Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Syst Control Lett 61(2):279–291. doi: 10.1016/j.sysconle.2011.11.005 CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Björkenstam S, Gleeson D, Bohlin R, et al. (2013) Energy efficient and collision free motion of industrial robots using optimal control. IEEE International Conference on Automation Science and Engineering (CASE). doi: 10.1109/CoASE.2013.6654025
  20. 20.
    Rubio F, Valero F, Sunyer J, Cuadrado J (2012) Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Ind Robot 39(1):92–100. doi: 10.1108/01439911211192538 CrossRefGoogle Scholar
  21. 21.
    Wapenhans JHJ, Steinle J, Pfeiffer F (1994) Optimal trajectory planning with application to industrial robots. Int J Adv Manuf Technol 9:49–55. doi: 10.1007/BF01792867
  22. 22.
    Meike M, Rankis I (2012) New type of power converter for common-ground DC bus sharing to increase the energy efficiency in drive systems. IEEE International Energy Conference and Exhibition. doi: 10.1109/EnergyCon.2012.6347757
  23. 23.
    Meike M, Sanfeld A, Ribickis L (2013) Recuperated energy savings potential and approaches in industrial robotics. The Annual Conference of the IEEE Industrial Electronics Society. doi: 10.1109/IECON.2013.6700329
  24. 24.
    Roßmann J, Kaigom EG, Atorf L, et al. (2014) Mental models for intelligent systems: eRobotics enables new approaches to simulation-based AI. Künstl Intell 28 (2):101–110. doi: 10.1007/s13218-014-0298-z CrossRefGoogle Scholar
  25. 25.
    Roßmann J, Kaigom EG, Atorf L, et al. (2013) From space to manufacturing industry: new approaches of eRobotics to serve todays and future manufacturing needs. In: Dangelmaier W (ed) Simulation in Produktion und Logistik, pp 417–426Google Scholar
  26. 26.
    Hansen C, Oltjen J, Meike D, Ortmaier D (2012) Enhanced approach for energy efficient trajectory generation of industrial robots. IEEE International Conference on Automation Science and Engineering (CASE). doi: 10.1109/CoASE.2012.6386343
  27. 27.
    Verscheure D, Demeulenaere B, Swevers J, et al. (2009) Time-optimal path tracking for robots: a convex optimization approach. IEEE Trans Autom Control 54(10):2318–2327. doi: 10.1109/TAC.2009.2028959 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Wei Y, Minxiu K, Lining S (2011) Optimal motion generation for heavy duty industrial robots-control scheme and algorithm. IEEE International Conference on Mechatronics (ICM):528–533. doi: 10.1109/ICMECH.2011.5971342
  29. 29.
    Chemnitz M, Schreck G, Krüger J (2011) Analyzing energy consumption of industrial robots. IEEE International Conference on Factory and Automation (EFTA). doi: 10.1109/ETFA.2011.6059221
  30. 30.
    Rassõlkin A, Hõimoja H, Teemets R (2011) Energy saving possibilities in the industrial robot IRB 1600 control. International Conference-Workshop Compatibility Electronics (CPE):100–105. doi: 10.1109/CPE.2011.5942236
  31. 31.
    Bryan C, Grenwalt M, Stienecker A (2010) Energy consumption reduction in industrial robots. ASEE North Central Sectional Conference 3C:1–4Google Scholar
  32. 32.
    Kolíba Z, Smetanová A (2010) Experimental implementation of energy optimization by robot movement. IEEE International Workshop on Robotics in Alpe-Adria-Danube Region. doi: 10.1109/RAAD.2010.5524564
  33. 33.
    Paryanto, Brossog M, Kohl J, et al. (2014) Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system. Procedia CIRP 23:131–136CrossRefGoogle Scholar
  34. 34.
    Paryanto, Brossog M, Merhof J, Franke J (2014) Mechatronic behavior analysis of a customized manufacturing cell. Lect Notes Prod Eng:389–399. doi: 10.1007/978-3-319-04271-8_33
  35. 35.
    Vergnano A, Thorstensson C, Lennartson B, et al. (2012) Modeling and optimization of energy consumption in cooperative multi-robot systems. IEEE Trans Autom Sci Eng 9(2):423–428. doi: 10.1109/TASE.2011.2182509 CrossRefGoogle Scholar
  36. 36.
    Wigström O, Lennartson B, Vergnano A, Breitholtz C (2013) High-level scheduling of energy optimal trajectories. IEEE Trans Autom Sci Eng 10(1):57–64. doi: 10.1109/TASE.2012.2198816 CrossRefGoogle Scholar
  37. 37.
    Alatartsev S, Mersheeva V, Augustine M, Ortmeier F (2013) On optimizing a sequence of robotic tasks. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS):217–223. doi: 10.1109/IROS.2013.6696356
  38. 38.
    Information from Profibus website. Available at, . accessed 18 July 2014
  39. 39.
    Berlin H (2012). Power and productivity for a better world. Accessed 16 June 2014
  40. 40.
    Kaigom EG, Priggemeyer M, Roßmann J (2014) 3D advanced simulation approach to address energy consumption issues of robot manipulators—an eRobotics approach. In: 41st international symposium on robotics (ISR), pp 1–6Google Scholar
  41. 41.
    Schröder S (2014) Ideallinien für Industrieroboter. Siemens Pictures of the Future, pp 38–39Google Scholar
  42. 42.
    Kara D (2013). Optimizing the energy efficiency of industrial robotics systems. Accessed 16 June 2014
  43. 43.
    Motoman MH5L specifications. Accessed 9 September 2013
  44. 44.
    Khalil W, Gautier M, Lemoine P (2007) Identification of the payload inertial parameters of industrial manipulators. IEEE International Conference on Robotics and Automation (ICRA). doi: 10.1109/ROBOT.2007.364241
  45. 45.
    Diaz JFA, Dutra MS, Pinto F ANC (2010) Kinematical and dynamical models of KR 6 KUKA robot, including the kinematic control in a parallel processing platform. In: Lazinica A, Kawai H (eds) Robot manipulators new achievements, pp 601–620Google Scholar
  46. 46.
    Choset H, Lynch KM, Hutchinson S, et al. (2005) Principles of robot motion: theory, algorithms and implementation. MIT Press, LondonGoogle Scholar
  47. 47.
    Peer A, Bajcinca N, Schweiger C (2003) Physical-based friction identification of an electro-mechanical actuator with Dymola/Modelica and MOPS. In: 3rd International Modelica Conference, pp 241–248Google Scholar
  48. 48.
    Saidur R (2010) A review on electrical motors energy use and energy savings. Renew Sust Energ Rev 14:877–898. doi: 10.1016/j.rser.2009.10.018 CrossRefGoogle Scholar
  49. 49.
    Haumer A, Kral C, Kapeller H, et al. (2009) The advancedmachines library: loss models for electric machines. In: 7th international Modelica conference, pp 847–854, doi: 10.3384/ecp09430103, (to appear in print)
  50. 50.
    Pellicciari M, Berselli G, Leali F, Vergnano A (2011) A minimal touch approach for optimizing energy efficiency in pick-and-place manipulators. International Conference on Advenced Robotics (ICAR). doi: 10.1109/ICAR.2011.6088620
  51. 51.
    Verdonck W (2004) Experimental robot and payload identification with application to dynamic trajectory compensation. Katholieke Universiteit Leuven, DessertationGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Paryanto
    • 1
  • Matthias Brossog
    • 1
  • Martin Bornschlegl
    • 2
  • Jörg Franke
    • 1
  1. 1.Institute for Factory Automation and Production Systems (FAPS)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Audi Planung GmbHIngolstadtGermany

Personalised recommendations