A numerical approach to modeling keyhole laser welding

  • Georgios Pastras
  • Apostolos Fysikopoulos
  • Christos Giannoulis
  • George Chryssolouris
ORIGINAL ARTICLE

Abstract

A numerical study of the laser welding process is presented. The numerical model is based on a combination of the enthalpy method and the finite difference techniques applied to the heat equation that can bypass the manual enforcement of the jump condition at the phase-separating surfaces. Minimal application of the “life and death of elements techniques” is required in order for the dynamics of the keyhole to be captured. This analysis results in the construction of the flowchart of a time-stepping algorithm, suitable for any software platform or computer language.

Keywords

Laser welding Process modeling Enthalpy method Finite difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li L, Hong M, Schmidt M, Zhong M, Malshe A, Huis in’tVeld B, Kovalenko V (2011) Laser nano-manufacturing—state of the art and challenges. CIRP Ann Manu Technol 60:735–755. doi:10.1016/j.cirp.2011.05.005
  2. 2.
    Tönshoff HK, Egger R, Klocke F (1996) Environmental and safety aspects of electrophysical and electrochemical processes. CIRP Ann Manuf Technol 45:2:553–568Google Scholar
  3. 3.
    Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer, New YorkGoogle Scholar
  4. 4.
    De KJ, Duflou JR, Kruth J-P (2007) Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes. Int J Adv Manuf Technol 35:115–126CrossRefGoogle Scholar
  5. 5.
    Chryssolouris G (1991) Laser machining: theory and practice. Springer, New YorkCrossRefGoogle Scholar
  6. 6.
    Ready JF, Farson DF (2001) LIA handbook of laser materials processing. Magnolia Publishing, Inc., Laser Institute of AmericaGoogle Scholar
  7. 7.
    Tsoukantas G, Stournaras A, Chryssolouris G (2008) Experimental investigation of remote welding with CO2 and Nd: YAG laser-based systems. J Laser Appl 20:50–58CrossRefGoogle Scholar
  8. 8.
    Klingbeil K (2006) What you need to know about remote laser welding: a look at how remote laser welding works and how it can be applied to your manufacturing process. Weld J 85:44–46Google Scholar
  9. 9.
    Zaeh MF, Munzert U, Oefele F (2007) Robot based remote laser-welding without scanner optics. In: Proceedings of the 4th International WLT-Conference on Lasers in Manufacturing, pp 1–8Google Scholar
  10. 10.
    Zaeh MF, Moesl J, Musiol J, Oefele F (2010) Material processing with remote technology-revolution or evolution? Phys Procedia 5:19–33. doi:10.1016/j.phpro.2010.08.119 CrossRefGoogle Scholar
  11. 11.
    Fysikopoulos A, Anagnostakis D, Salonitis K, Chryssolouris G (2012) An empirical study of the energy consumption in automotive assembly. Procedia CIRP 3:477–482. doi:10.1016/j.procir.2012.07.082 CrossRefGoogle Scholar
  12. 12.
    Anthony P (2004) The reality of remote laser welding. In Laser Solutions 19:9–11Google Scholar
  13. 13.
    Bemenek M (2006) Technology report: welding from a distance. In Laser Solutions 21:19–23Google Scholar
  14. 14.
    Sabo DA (2007) The evolution of scanners for remote welding applications: the rise of beam quality leads to proliferation of remote welding applications. http://www.thefabricator.com/article/lasercutting/the-evolution-of-scanners-for-remote-welding-applications. Accessed on 15 May 2014
  15. 15.
    Verhaeghe G (2012) Remote laser welding for automotive seat production. In Laser Solutions 27:6–11Google Scholar
  16. 16.
    Abderrazak K, Salem WB, Mhiri H, Lepalec G, Autric M (2008) Modelling of CO2 laser welding of magnesium alloys. Opt Laser Technol 40:581–588CrossRefGoogle Scholar
  17. 17.
    Chen X, Wang HX (2001) A calculation model for the evaporation recoil pressure in laser material processing. J Phys D Appl Phys 34:2637–2642CrossRefGoogle Scholar
  18. 18.
    Khan MMA, Romoli L, Dini G, Fiaschi M (2011) A simplified energy based model for laser welding of ferritic stainless steels in overlap configuration. CIRP Ann Manuf Technol 60:215–218CrossRefGoogle Scholar
  19. 19.
    Phanikumar G, Chattopadhyay K (2000) Modeling of transport phenomena in laser welding of dissimilar metals. Int J Numer Methods Heat Fluid Flow 11:156–171CrossRefGoogle Scholar
  20. 20.
    Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27:1805–1814CrossRefGoogle Scholar
  21. 21.
    Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part I. mathematical modeling, numerical methodology, role of recoil pressure, multiple reflections and free surface evolution. Metall Mater Trans A 33:1817–1830CrossRefGoogle Scholar
  22. 22.
    Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Burden RL, Faires JD (1993) Numerical analysis. PWS Publishing Co., BostonMATHGoogle Scholar
  24. 24.
    Ki H, Mohanty PS, Mazumder J (2002) Modeling of laser keyhole welding: part II. simulation of keyhole evolution, velocity, temperature profile and experimental verification. Metal Mater Trans A 33:1831–1842CrossRefGoogle Scholar
  25. 25.
    Rońda J, Siwek A (2011) Modelling of laser welding process in the phase of keyhole formation. Arch Civil Mech Eng 11:739–752CrossRefGoogle Scholar
  26. 26.
    Al-Kazzaz H, Medraj M, Cao X, Jahazi M (2008) Nd: YAG laser welding of aerospace grade ZE41A magnesium alloy: modeling and experimental investigations. Mater Chem Phys 109:61–76CrossRefGoogle Scholar
  27. 27.
    Shanmugam NS, Buvanashekaran G, Sankaranarayanasamy K (2013) Some studies on temperature distribution modeling of laser butt welding of AISI 304 stainless steel sheets. World Acad Sci Eng Technol 7:1088–1097Google Scholar
  28. 28.
    Spina R, Tricarico L, Basile G, Sibillano T (2007) Thermo-mechanical modeling of laser welding of AA5083 sheets. J Mater Process Technol 191:215–219CrossRefGoogle Scholar
  29. 29.
    Lampa C, Kaplan AFH, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30:1293–1299CrossRefGoogle Scholar
  30. 30.
    Salonitis K, Stavropoulos P, Fysikopoulos A, Chryssolouris G (2013) CO2 laser butt-welding of steel sandwich sheet composites. Int J Adv Manuf Technol 69:245–256. doi:10.1007/s00170-013-5025-7 CrossRefGoogle Scholar
  31. 31.
    Sugioka K, Meunier M, Piqué A (2010) Laser precision microfabrication. Springer Ser Mater Sci 135:91–120CrossRefGoogle Scholar
  32. 32.
    Solana P, Negro G (1997) A study of the effect of multiple reflections on the shape of the keyhole in the laser processing of materials. J Phys D Appl Phys 30:3216–3222CrossRefGoogle Scholar
  33. 33.
    Akhter R, Steen W, Cruciani D (1988) Laser welding of zinc coated steel. In: Proceedings of the 5th International Conference on Lasers in Manufacturing, pp 105–120Google Scholar
  34. 34.
    Mei L, Chen G, Jin X, Zhang Y, Wu Q (2009) Research on laser welding of high strength galvanized automobile steel sheets. Optics & Lasers in Eng 47:1117–1124CrossRefGoogle Scholar
  35. 35.
    Bley H, Weyand L, Luft A (2007) An alternative approach for the cost-efficient laser welding of zinc coated sheet metal. CIRP Ann Manuf Technol 56:17–20. doi:10.1016/j.cirp.2007.05.006 CrossRefGoogle Scholar
  36. 36.
    Chen G, Mei L, Zhang M, Zhang Y, Wang Z (2013) Research on key influence factors of laser overlap welding of automobile body galvanized steel. Optics Laser Technol 45:726–733CrossRefGoogle Scholar
  37. 37.
    Svelto O (1998) Principles of lasers. Springer, New YorkCrossRefGoogle Scholar
  38. 38.
    Douglas J, Gallie TM (1955) On the numerical integration of a parabolic differential equation subject to a moving boundary condition. Duke Math J 22(4):557–571CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Crank J (1987) Free and moving boundary problems. Oxford University Press, pp 424Google Scholar
  40. 40.
    Swaminathan CR, Voller VR (1993) On the enthalpy method. Int J Numer Methods Heat Fluid Flow 3:233–244CrossRefGoogle Scholar
  41. 41.
    Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Co., Washington, New York, London, p 197MATHGoogle Scholar
  42. 42.
    Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Methods Eng 24(1):271–284CrossRefMATHGoogle Scholar
  43. 43.
    Morgan K (1981) A numerical analysis of freezing and melting with convection. Comput Methods Appl Mech Eng 28(3):275–284CrossRefGoogle Scholar
  44. 44.
    Morgan K, Taylor C, Brebbia CA (1980) Computer methods in fluids. Pentech Press, London, pp 257–284Google Scholar
  45. 45.
    Voller VR, Cross M (1981) Accurate solutions of moving boundary problems using the enthalpy method. Int J Heat Mass Transf 24(3):545–556CrossRefMATHGoogle Scholar
  46. 46.
    Pastras G, Fysikopoulos A, Stavropoulos P, Chryssolouris G (2014) An approach to modeling evaporation pulsed laser drilling and its energy efficiency. Int J Adv Manuf Technol 72(9–12):1227–1241. doi:10.1007/s00170-014-5668-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Georgios Pastras
    • 1
  • Apostolos Fysikopoulos
    • 1
  • Christos Giannoulis
    • 1
  • George Chryssolouris
    • 1
  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations