Advertisement

Effect of mandrel-cores on springback and sectional deformation of rectangular H96 tube NC bending

  • Y. X. Zhu
  • Y. L. LiuEmail author
  • H. Yang
ORIGINAL ARTICLE

Abstract

To reveal the effect mechanism of mandrel-cores on springback and sectional deformation of rectangular H96 tube NC bending, the stress variation caused by using different numbers of cores are analyzed based on the finite element simulation as well as its relationship with the springback and sectional deformation. Results show that the flexible core causes larger tangential stress in the bending stage, which leads to larger springback. The frequency of repeated loading-unloading process of the tube increases with the increase of the core number, and the reloading process always keeps in plastic deformation range, so the varied elastic modulus effect and the Bauschinger effect are highly suggested to be considered to predict springback accurately. The retracting mandrel is an elastic process that will average and reduce the magnitude of stress, and the stress reduction nearly increases with the increase of the core number. The variation trend of sectional deformation is determined by both the tangential stress and the circumferential stress. In addition, the performances of the mandrel-core die and the PVC mandrel on the H-bending process are compared. It is found the mandrel-core die has advantage to prevent the width and height deformations of H-bend when compared with the PVC mandrel, and this phenomenon is absolutely opposite with that in E-bending process.

Keywords

Thin-walled rectangular H96 tube Rotary-draw bending Mandrel-cores Springback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang H, Li H, Zhang ZY, Zhan M, Liu J, Li G (2012) Advances and trends on tube bending forming technologies. Chin J Aeronaut 25:1–12. doi: 10.1016/S1000-9361(11)60356-7 CrossRefGoogle Scholar
  2. 2.
    Zhao GY, Liu YL, Yang H (2010) Effect of clearance on wrinkling of thin-walled rectangular tube in rotary draw bending process. Int J Adv Manuf Technol 50:85–92. doi: 10.1007/s00170-009-2508-7 CrossRefGoogle Scholar
  3. 3.
    Gu RJ, Yang H, Zhan M, Li H (2006) Springback of thin-walled tube NC precision bending and its numerical simulation. Trans Nonferrous Metals Soc China 16:631–638. doi: 10.1016/S1003-6326(06)60268-9 CrossRefGoogle Scholar
  4. 4.
    Li C, Yang H, Zhan M, Xu XD, Li GJ (2009) Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes. Trans Nonferrous Metals Soc China 19:668–673. doi: 10.1016/S1003-6326(08)60331-3 CrossRefGoogle Scholar
  5. 5.
    Li H, Yang H, Zhan M, Sun ZC, Gu RJ (2007) Role of mandrel in NC precision bending process of thin-walled tube. Int J Mach Tools Manuf 47:1164–1175. doi: 10.1016/j.ijmachtools.2006.09.001 CrossRefGoogle Scholar
  6. 6.
    Zhu YX, Liu YL, Yang H (2012) Sensitivity of springback and section deformation to process parameters in rotary draw bending of thin-walled rectangular H96 brass tube. Trans Nonferrous Metals Soc China 22:2233–2240. doi: 10.1016/S1003-6326(11)61454-4 CrossRefGoogle Scholar
  7. 7.
    He DH, Li DS, Li XQ, Jin CH (2010) Optimization on springback reduction in cold stretch forming of titanium-alloy aircraft skin. Trans Nonferrous Metals Soc China 20:2350–2357. doi: 10.1016/S1003-6326(10)60654-1 CrossRefGoogle Scholar
  8. 8.
    Taherizadeh A, Ghaei A, Green DE, Altenhof WJ (2009) Finite element simulation of springback for a channel draw process with drawbead using different hardening models. Int J Mech Sci 51:314–325. doi: 10.1016/j.ijmecsci.2009.03.00 CrossRefzbMATHGoogle Scholar
  9. 9.
    Zhao GY, Liu YL, Yang H, Lu CH (2010) Cross-sectional distortion behaviors of thin-walled rectangular tube in rotary-draw bending process. Trans Nonferrous Metals Soc China 20:484–489. doi: 10.1016/S1003-6326(09)60166-7 CrossRefGoogle Scholar
  10. 10.
    Shen HW, Liu YL, Qi HY, Yang H, Zhou SH (2013) Relations between the stress components and cross-sectional distortion of thin-walled rectangular waveguide tube in rotary draw bending process. Int J Adv Manuf Technol 68:651–662. doi: 10.1007/s00170-013-4786-3 CrossRefGoogle Scholar
  11. 11.
    Gu RJ, Yang H, Zhan M, Li H, Li HW (2008) Research on the springback of thin-walled tube NC bending based on the numerical simulation of the whole process. Comput Mater Sci 42:537–549. doi: 10.1016/j.commatsci.2007.09.001 CrossRefGoogle Scholar
  12. 12.
    Jiang ZQ, Yang H, Zhan M, Yue YB, Liu J, Xu XD, Li GJ (2010) Establishment of a 3D FE model for the bending of a titanium alloy tube. Int J Mech Sci 52:1115–1124. doi: 10.1016/j.ijmecsci.2009.09.029 CrossRefGoogle Scholar
  13. 13.
    Chen FK, Ko SF (2011) Deformation analysis of springback in L-bending of sheet metal. Adv Sci Lett 4:1928–1932. doi: 10.1166/asl.2011.1713 CrossRefGoogle Scholar
  14. 14.
    Thipprakmas S, Phanitwong W (2011) Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique. Mater Des 32:4430–4436. doi: 10.1016/j.matdes.2011.03.069 CrossRefGoogle Scholar
  15. 15.
    Daxin E, Liu YF (2010) Springback and time-dependent springback of 1Cr18Ni9Ti stainless steel tubes under bending. Mater Des 31:1256–1261. doi: 10.1016/j.matdes.2009.09.026 CrossRefGoogle Scholar
  16. 16.
    Padmanabhan R, Oliveira MC, Laurent H, Alves JL, Menezes LF (2009) Study on springback in deep drawn tailor welded blanks. Int J Mater Form 2:829–832. doi: 10.1007/s12289-009-0566-x CrossRefGoogle Scholar
  17. 17.
    Liu KX, Liu YL, Yang H (2014) Experimental and FE simulation study on cross-section distortion of rectangular tube under multi-die constraints in rotary draw bending process. Int J Adv Manuf Technol 15:633–641. doi: 10.1007/s12541-014-0381-2 Google Scholar
  18. 18.
    Li Y, Xu ZC, Tang Y, Zeng ZX (2010) Forming characteristics analysis of the cross-section of axially inner grooved copper tube. Int J Adv Manuf Technol 47:1023–1031. doi: 10.1007/s00170-009-2237-y CrossRefGoogle Scholar
  19. 19.
    Zhu YX, Liu YL, Li HP, Yang H (2013) Comparison between the effects of PVC mandrel and mandrel-cores die on the forming quality of bending rectangular H96 tube. Int J Mech Sci 76:132–143. doi: 10.1016/j.ijmecsci.2013.09.011 CrossRefGoogle Scholar
  20. 20.
    Yu TX, Zhang LC (1992) Plastic bending theory and its applications. Science Press, Beijing, pp 10–15Google Scholar
  21. 21.
    Yoshida F, Uemori T, Fujiwara K (2002) Elastic-plastic behavior of steel sheets under in-plane cyclic tension-compression at large strain. Int J Plast 18:633–659. doi: 10.1016/S0749-6419(01)00049-3 CrossRefzbMATHGoogle Scholar
  22. 22.
    Yang M, Akiyama Y, Sasaki T (2004) Evaluation of change in material properties due to plastic deformation. J Mater Process Technol 151:232–236. doi: 10.1016/j.jmatprotec.2004.04.114 CrossRefGoogle Scholar
  23. 23.
    Yu HY (2009) Variation of elastic modulus during plastic deformation and its influence on springback. Mater Des 30:846–850. doi: 10.1016/j.matdes.2008.05.064 CrossRefGoogle Scholar
  24. 24.
    Zhu YX, Liu YL, Li HP, Yang H (2013) Springback prediction for rotary-draw bending of rectangular H96 tube based on isotropic, mixed and Yoshida-Uemori two-surface hardening models. Mater Des 47:200–209. doi: 10.1016/j.matdes.2012.12.018 CrossRefGoogle Scholar
  25. 25.
    Yoshida F, Uemori T (2002) A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int J Plast 18:661–686. doi: 10.1016/S0749-6419(01)00050-X CrossRefzbMATHGoogle Scholar
  26. 26.
    Alves LM, Pardal TCD, Martins PAF (2009) Forming of thin-walled hollow spheres using sacrificial polymer mandrels. Int J Mach Tools Manuf 49:521–529. doi: 10.1016/j.ijmachtools.2008.12.011 CrossRefGoogle Scholar
  27. 27.
    Xu H (1991) Machinery’s handbook, 1st edn. China Machine Press, BeijingGoogle Scholar
  28. 28.
    Hibbit Karlson and Sorensen Inc (2005) ABAQUS Version 6.5 Documentation. USAGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Mechanical EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations