Advertisement

The effect of roughness and residual stresses on fatigue life time of an alloy of titanium

  • K. MoussaouiEmail author
  • M. Mousseigne
  • J. Senatore
  • R. Chieragatti
ORIGINAL ARTICLE

Abstract

The quality of titanium alloy parts in the aeronautical field demands great reliability, especially in fatigue resistance. This is mainly determined by surface integrity, which is in turn defined by geometrical, mechanical and metallurgical parameters. The present article provides a study of the influence that surface integrity has on the fatigue life of Ti6Al4V. Milling plans of procedure generating widely varying surface integrities were performed on fatigue test coupons. Four-point bending tests were then conducted. No influence of the geometric and metallurgical parameters was observed. Only the mechanical parameter seems to have a preponderant influence on fatigue life.

Keywords

Surface integrity Residual stress Ti6Al4V Fatigue life 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Novovic D, Dewes RC, Aspinwall DK, Voice W, Bowen P (2004) Int J Machine Tools Manufac 44(2-3):125. doi: 10.1016/j.ijmachtools.2003.10.018 CrossRefGoogle Scholar
  2. 2.
    Ezugwu E (2005) Int J Machine Tools Manufac 45(12-13):1353. doi: 10.1016/j.ijmachtools.2005.02.003 CrossRefGoogle Scholar
  3. 3.
    KONIG W (1978) Proceedings of 47th Meeting of AGARD Structural and Materials Panel. Florence, Italy, pp 1.1–1.10Google Scholar
  4. 4.
    Sun J, Guo Y (2008) Int J Machine Tools Manufac 48(12-13):1486. doi: 10.1016/j.ijmachtools.2008.04.002 CrossRefGoogle Scholar
  5. 5.
    Ezugwu EO, Wang ZM (1997) J Mater Process Technol 68 (3):262. doi: 10.1016/S0924-0136(96)00030-1 CrossRefGoogle Scholar
  6. 6.
    Suraratchai M, Limido J, Mabru C, Chieragatti R (2008) Int J Fatigue 30(12):2119. doi: 10.1016/j.ijfatigue.2008.06.003 CrossRefGoogle Scholar
  7. 7.
    Shahzad M, Chaussumier M, Chieragatti R, Mabru C, Aria FR (2010) J Mater Process Technol 210(13):1821. doi: 10.1016/j.jmatprotec.2010.06.019 CrossRefGoogle Scholar
  8. 8.
    Gaceb M, Brahmi S (2007) Etude de l’influence de l’átat de surface sur la tenue à la fatigue d’un acier XC48 (Laboratoire de Fiabilité des Equipements Pétroliers et matériaux, Université M’Hamed Bougara de Boumerdes Algérie)Google Scholar
  9. 9.
    Schwach DW, Guo Y (2006) Int J Fatigue 28(12):1838. doi: 10.1016/j.ijfatigue.2005.12.002 CrossRefGoogle Scholar
  10. 10.
    Sharman ARC, Aspinwall DK, Dewes RC, Clifton D, Bowen P (2001) Int J Machine Tools Manufac 41(11):1681. doi: 10.1016/S0890-6955(01)00034-7 CrossRefGoogle Scholar
  11. 11.
    Flavenot J, Skalli N, Maitre FL (1983) CIRP Ann - Manufac Technol 32(1):475. doi: 10.1016/S0007-8506(07)63443-X CrossRefGoogle Scholar
  12. 12.
    Elkhabeery MM, Fattouh M (1989) Int J Machine Tools Manufac 29:391CrossRefGoogle Scholar
  13. 13.
    Lieurade HP (1989) Surfaces 27(206):87Google Scholar
  14. 14.
    Wagner L, Lutjering G (1981)Google Scholar
  15. 15.
    Mitryaev KF, Seryapin YA (1984) Soviet Eng Res 4:17Google Scholar
  16. 16.
    Wagner L (1999) Mater Sci Eng A 263(2):210. doi: 10.1016/S0921-5093(98)01168-X CrossRefGoogle Scholar
  17. 17.
    Ludian T, Wagner L (2008) Adv Mater Sci 8(2):44. doi: 10.2478/v10077-008-0030-5 Google Scholar
  18. 18.
    Smith S, Melkote SN, Lara-Curzio E, Watkins TR, Allard L, Riester L (2007) Mater Sci Eng A 459(1-2):337. doi: 10.1016/j.msea.2007.01.011 CrossRefGoogle Scholar
  19. 19.
    Welsch G, Boyer R, Collings EW (1994) Materials properties handbook: Titanium alloys, (ASM. International)Google Scholar
  20. 20.
    Combres Y (1999) Propriétés du titane et de ses alliages (Techniques de l’ingénieur M557)Google Scholar
  21. 21.
    Moussaoui K, Mousseigne M, Senatore J, Chieragatti R, Monies F The International Journal of Advanced Manufacturing Technology, pp 1–13Google Scholar
  22. 22.
    Velasquez JDP (2007) Etude des copeaux et de l’intégrité de surface en usinage à grande vitesse de l’alliage de titane TA6V. Ph.D. thesis. Université Paul Verlaine MetzGoogle Scholar
  23. 23.
    Castex L, Lebrun JL, Maeder G, Sprauel JM (1981) Détermination des contraintes résiduelles par diffraction des rayons X. No. 22 in Publications scientifiques et techniques - Ecole nationale supérieure d’arts et métiers, ISSN 0768-1429 ENSAM. France, ParisGoogle Scholar
  24. 24.
    Hoffmeister J, Schulze V, Hessert R, Koenig G (2012). Int J Mater Res 103(1):66. doi: 10.3139/146.110630 CrossRefGoogle Scholar
  25. 25.
    Madariaga A, Esnaola JA, Fernandez E, Arrazola PJ, Garay A, Morel F (2013) The International Journal of Advanced Manufacturing Technology, pp 1–12Google Scholar
  26. 26.
    Javidi A, Rieger U, Eichlseder W (2008). Int J Fatigue 30(10-11):2050. doi: 10.1016/j.ijfatigue.2008.01.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • K. Moussaoui
    • 1
    Email author
  • M. Mousseigne
    • 1
  • J. Senatore
    • 1
  • R. Chieragatti
    • 1
  1. 1.Universit de Toulouse 3 - Paul SabatierToulouseFrance

Personalised recommendations