Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam

  • Matthias Markl
  • Regina Ammer
  • Ulrich Rüde
  • Carolin Körner
ORIGINAL ARTICLE

Abstract

This paper investigates in hatching process strategies for additive manufacturing using an electron beam by numerical simulations. The underlying physical model and the corresponding three-dimensional thermal free-surface lattice Boltzmann method of the simulation software are briefly presented. The simulation software has already been validated on the basis of experiments up to 1.2kW beam power by hatching a cuboid with a basic process strategy, whereby the results are classified into porous, good, and uneven, depending on their relative density and top surface smoothness. In this paper, we study the limitations of this basic process strategy in terms of higher beam powers and scan velocities to exploit the future potential of high power electron beam guns up to 10kW. Subsequently, we introduce modified process strategies, which circumvent these restrictions, to build the part as fast as possible under the restriction of a fully dense part with a smooth top surface. These process strategies are suitable to reduce the build time and costs, maximize the beam power usage, and therefore use the potential of high power electron beam guns.

Keywords

Powder-bed-based additive manufacturing Selective electron beam melting Hatching process strategy Thermal-free surface lattice Boltzmann method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammer R, Markl M, Ljungblad U, Körner C, Rüde U (2014) Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method. Comput Math Appl 67:318–330. doi:10.1016/j.camwa.2013.10.001 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ammer R, Rüde U, Markl M, Jüchter V, Körner C (2014) Validation experiments for lbm simulations of electron beam melting. Int J Modern Phys C 25(2). doi:10.1142/S0129183114410095
  3. 3.
    Boivineau M, Cagran C, Doytier D, Eyraud V, Nadal M H, Wilthan B, Pottlacher G (2006) Thermophysical properties of solid and liquid ti-6al-4v alloy. Int J Thermophys 27(2):507–529. doi:10.1007/s10765-005-0001-6 CrossRefGoogle Scholar
  4. 4.
    Boyer R, Welsch G, Collings EW (eds) (1998) Material properties handbook: titanium alloys. In: Boyer R, Welsch G, Collings EW (eds) Material properties handbook, ASM InternationalGoogle Scholar
  5. 5.
    Chatterjee D, Chakraborty S (2006) A hybrid lattice Boltzmann model for solid-liquid phase transition in presence of fluid flow. Phys Lett A 351:359–367CrossRefMATHGoogle Scholar
  6. 6.
    Feichtinger C, Donath S, Köstler H, Götz J, Rüde U (2011) Walberla: HPC software design for computational engineering simulations. J Comput Sci 2(2):105–112. doi:10.1016/j.jocs.2011.01.004 CrossRefGoogle Scholar
  7. 7.
    Ginzburg I (2005) Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations. Adv Water Resour 28(11):1196–1216CrossRefGoogle Scholar
  8. 8.
    Handbook Committee ASM International (ed) (1990) Metals handbook: properties and selection—nonferrous alloys and special-purpose materials, metals handbook, vol 2. ASM InternationalGoogle Scholar
  9. 9.
    He X, Chen S, Doolen G (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys 146:282–200CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Heinl P, Rottmair A, Körner C, Singer R (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364. doi:10.1002/adem.200700025 CrossRefGoogle Scholar
  11. 11.
    Higuera F, Jimenez J (1989) Boltzmann approach to lattice gas simulations. Europhys Lett:9Google Scholar
  12. 12.
    Jüchter V, Scharowsky T, Singer R, Körner C (2014) Processing window and evaporation phenomena for ti-6al-4v produced by selective electron beam melting. Acta Materialia 76:252–258. doi:10.1016/j.actamat.2014.05.037 CrossRefGoogle Scholar
  13. 13.
    Klassen A, Scharowsky T, Körner C (2014) Evaporation model for beam based additive manufacturing using free surface lattice boltzmann methods. J Phys D: Appl Phys 47(27). doi:10.1088/0022-3727/47/27/275303
  14. 14.
    Körner C, Thies M, Hofmann T, Thürey N, Rüde U (2005) Lattice Boltzmann model for free surface flow for modeling foaming. J Stat Phys 121:179–196CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Kornilov S, Rempe N, Beniyash A, Murray N, Hassel T, Ribton C (2013) On the beam parameters of an electron gun with a plasma emitter. Techn Phys Lett 39(10):843–846CrossRefGoogle Scholar
  16. 16.
    Köstler H, Rüde U (2013) The cse software challenge—covering the complete stack. IT-Information Technology Methoden und innovative Anwendungen der Informatik und Informationstechnik 55(3):91–96. doi:10.1524/itit.2013.0010 Google Scholar
  17. 17.
    Lu H M, Jiang Q (2005) Surface tension and its temperature coefficient for liquid metals. J Phys Chem B 109(32):15,463–15,468. doi:10.1021/jp0516341 CrossRefGoogle Scholar
  18. 18.
    Markl M, Ammer R, Ljungblad U, Rüde U, Körner C (2013) Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment. Procedia Comput Sci 18:2127–2136. doi:10.1016/j.procs.2013.05.383. 2013 International Conference on Computational ScienceCrossRefGoogle Scholar
  19. 19.
    Massaioli F, Benzi R, Succi S (1993) Exponential tails in two-dimensional Rayleigh-Bnard convection. Europhys Lett 21:305CrossRefGoogle Scholar
  20. 20.
    McNamara G, Zanetti C (1988) Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett:61Google Scholar
  21. 21.
    Murr L, Amato K, Li S, Tian Y, Cheng X, Gaytan S, Martinez E, Shindo P, Medina F, Wicker R (2011) Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater 4(7):1396–1411CrossRefGoogle Scholar
  22. 22.
    Palmer B, Rector D (2000) Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J Comput Phys 161:1–20CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Rawal S, Brantley J, Karabudak N (2013) Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications. In: 2013 6th international conference on recent advances in space technologies (RAST), pp 5–11. doi:10.1109/RAST.2013.6581260
  24. 24.
    Shan X (1997) Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Phys Rev E 55:2780–2788CrossRefGoogle Scholar
  25. 25.
    Shi B, Guo Z (2009) Lattice Boltzmann model for nonlinear convection-diffusion equations. Phys Rev E 79:016,701. doi:10.1103/PhysRevE.79.016701 CrossRefGoogle Scholar
  26. 26.
    Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13(2):89–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Matthias Markl
    • 1
  • Regina Ammer
    • 2
  • Ulrich Rüde
    • 2
  • Carolin Körner
    • 1
  1. 1.Chair of Metals Science and TechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Chair for System SimulationFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations