Performance evaluation of laser tracker kinematic models and parameter identification

  • J. Conte
  • A. C. Majarena
  • R. Acero
  • J. Santolaria
  • J. J. Aguilar


A new kinematic model for a laser tracker is presented in this paper. This model obtains the kinematic parameters by the coordinate transformation matrices between successive reference systems based on the Denavit-Hartenberg method. The ASME B89.4.19 Standard provides some ranging tests, length measurement system tests and two-face system tests that can be performed to analyze the performance of the laser tracker. However, these tests take a lot of time and require specialized equipment. Another problem is that the end user cannot apply the manufacturer’s model because he cannot measure physical errors. The kinematic model developed has been compared with a geometric model based on modelling physical errors. To do this, the laser tracker kinematic model has been presented and validated using a mesh with synthetic reflector coordinates and known error parameters. The laser tracker has then been calibrated, in an easy and fast way, with experimental data using the measurements obtained by a coordinate measuring machine as nominal values. The calibration has been performed with both the kinematic model presented in this work and the geometric model based on physical errors. A comparison of both calibrations has been made, analyzing the performance of both models. Finally, a sensitivity analysis of the length measurement system tests is presented to recommend the more suitable positions to perform the calibration procedure.


Laser tracker Synthetic generator Modelling Kinematic parameter identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gu Y, Hu J, Jin Y, Zhai C (2012) A smart car for the surface shape measurement of large antenna based on Laser Tracker: 84505P-84505P-6Google Scholar
  2. 2.
    Cuypers W, Van Gestel N, Voet A, Kruth J, Mingneau J, Bleys P (2009) Optical measurement techniques for mobile and large-scale dimensional metrology. Opt Lasers Eng 47:292–300CrossRefGoogle Scholar
  3. 3.
    Liu WL, Wang ZK (2010) New method for large-scale dimensional metrology using laser tracker system. Adv Mater Res 97:4247–4250CrossRefGoogle Scholar
  4. 4.
    Ouyang J, Liang Z, Zhang H, Yan Y (2006) Research of measuring accuracy of laser tracker system: 62800T-62800T-6Google Scholar
  5. 5.
    Yan B, Wang J, Lu N, Deng W, Dong M, Lou X (2008) Application of laser tracker used in the measuring and the adjusting of the workbench for SAR antenna: 71552M-71552M-8Google Scholar
  6. 6.
    Gordon L (2011) Portable laser tracker measures large volumes accurately. Mach Des 83:55–55Google Scholar
  7. 7.
    Barazzetti L, Giussani A, Roncoroni F, Previtali M (2013) Monitoring structure movement with laser tracking technology: 879106-879106-12Google Scholar
  8. 8.
    Sładek J, Ostrowska K, Kohut P, Holak K, Gąska A, Uhl T (2012) Development of a vision based deflection measurement system and its accuracy assessment. MeasurementGoogle Scholar
  9. 9.
    Santolaria J, Conte J, Ginés M (2013) Laser tracker-based kinematic parameter calibration of industrial robots by improved CPA method and active retroreflector. Int J Adv Manuf Technol 66:2087–2106CrossRefGoogle Scholar
  10. 10.
    Nubiola A, Bonev IA (2012) Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot Comput Integrated Manuf 29(1):236–245. doi:10.1016/j.rcim.2012.06.004Google Scholar
  11. 11.
    Zhu W, Mei B, Ke Y (2014) Kinematic modeling and parameter identification of a new circumferential drilling machine for aircraft assembly. Int J Adv Manuf Technol 72(5–8):1143–1158
  12. 12.
    Wang Z, Maropolous PG (2013) Real-time error compensation of a three-axis machine tool using a laser tracker. Int J Adv Manuf Technol 69:919–933CrossRefGoogle Scholar
  13. 13.
    Meng G, Tiemin L, Wensheng Y (2003) Calibration method and experiment of Stewart platform using a laser tracker 3:2797–2802Google Scholar
  14. 14.
    Koseki Y, Arai T, Sugimoto K, Takatuji T, Goto M (1998) Design and accuracy evaluation of high-speed and high precision parallel mechanism, vol 2. IEEE, Leuven, p 1340–1345 Google Scholar
  15. 15.
    Santolaria J, Majarena AC, Samper D, Brau A, Velázquez J (2014) Articulated arm coordinate measuring machine calibration by laser tracker multilateration. Sci World J 2014:681853-1–681853-11CrossRefGoogle Scholar
  16. 16.
    Muralikrishnan B, Lee V, Blackburn C, Sawyer D, Phillips S, Ren W, Hughes B (2013) Assessing ranging errors as a function of azimuth in laser trackers and tracers. Meas Sci Technol 24:065201CrossRefGoogle Scholar
  17. 17.
    ASME B89.4.19-2006 Standard. Performance evaluation of laser-based spherical coordinate measurement systems
  18. 18.
    Muralikrishnan B, Sawyer D, Blackburn C, Phillips S, Borchardt B, Estler W (2009) ASME B89. 4.19 performance evaluation tests and geometric misalignments in laser trackers. J Res Ntnl Inst Stand Technol 114:21–35CrossRefGoogle Scholar
  19. 19.
    Loser R, Kyle S (1999) Alignment and field check procedures for the Leica Laser Tracker LTD 500:1–14Google Scholar
  20. 20.
    Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. Trans ASME J Appl Mech 22:215–221zbMATHMathSciNetGoogle Scholar
  21. 21.
    Wanli L, Xinghua Q, Yonggang Y (2007) Calibration and error compensation of portable coordinate measuring arm. Chin J Sci Inst: S1Google Scholar
  22. 22.
    Santolaria J, Aguilar J, Yaguee J, Pastor J (2008) Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines. Precis Eng-J Int Soc Precis Eng Nanotechnol 32:251–268Google Scholar
  23. 23.
    Nubiola A, Bonev IA (2014) Absolute robot calibration with a single telescoping ballbar. Precis Eng 38:472–480CrossRefGoogle Scholar
  24. 24.
    Robson S, Ahmadabadian A, Sargeant B, Erfani T, Boehm J (2013) A webcam photogrammetric method for robot calibrationGoogle Scholar
  25. 25.
    Majarena AC, Santolaria J, Samper D, Aguilar JJ (2011) Modelling and calibration of parallel mechanisms using linear optical sensors and a coordinate measuring machine. Meas Sci Technol 22:105101-1-12CrossRefGoogle Scholar
  26. 26.
    Zhang D, Gosselin CM (2002) Kinetostatic analysis and design optimization of the tricept machine tool family. J Manuf Sci Eng 124:725–733CrossRefGoogle Scholar
  27. 27.
    Takatsuji T, Goto M, Kirita A, Kurosawa T, Tanimura Y (2000) The relationship between the measurement error and the arrangement of laser trackers in laser trilateration. Meas Sci Technol 11:477CrossRefGoogle Scholar
  28. 28.
    Zhuang H, Motaghedi SH, Roth ZS, Bai Y (2003) Calibration of multi-beam laser tracking systems. Robot Comput Integr Manuf 19:301–314CrossRefGoogle Scholar
  29. 29.
    Aguado S, Santolaria J, Samper D, Aguilar JJ (2013) Study of self-calibration and multilateration in machine tool volumetric verification for laser tracker error reduction. Proc Inst Mech Eng Pt B: J Eng Manuf: 0954405413511074Google Scholar
  30. 30.
    Hughes B, Forbes A, Lewis A, Sun W, Veal D, Nasr K (2011) Laser tracker error determination using a network measurement. Meas Sci Technol 22:045103CrossRefGoogle Scholar
  31. 31.
    Slocum AH (1992) Precision machine design. Prentice Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • J. Conte
    • 1
  • A. C. Majarena
    • 1
  • R. Acero
    • 2
  • J. Santolaria
    • 1
  • J. J. Aguilar
    • 1
  1. 1.Department of Design and Manufacturing EngineeringUniversidad de ZaragozaZaragozaSpain
  2. 2.Centro Universitario de la Defensa ZaragozaZaragozaSpain

Personalised recommendations