Advertisement

Modeling of the moving induction heating used as secondary heat source in weld-based additive manufacturing

  • Xingwang Bai
  • Haiou ZhangEmail author
  • Guilan Wang
ORIGINAL ARTICLE

Abstract

To combat thermal-induced problems such as residual stress, deformation, and crack, induction heating is introduced into weld-based additive manufacturing process as a controlled thermal intervention. To date, however, numerical simulation of this induction-assisted weld-based additive manufacturing process is still a tough task; for conducting transient thermoelectromagnetic motion, coupling analysis is computationally prohibitive. In this paper, a simulation strategy is devised to address the problem. The coupling analysis is performed only at a typical time to obtain the representative distribution of induction heat, which is then transferred to the thermal analysis of multilayer deposition as a moving heat source. Utilizing this strategy, the effects of real-time induction preheating and postheating on residual stress state are analyzed in comparative simulations. The results show that both induction preheating and postheating lead to more homogeneous heat input and lower residual stresses compared with the case without induction heating.

Keywords

Additive manufacturing FEM Thermoelectromagnetic coupling analysis Induction heating Heat source 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vayre B, Vignat F, Villeneuve F (2012) Metallic additive manufacturing: state-of-the-art review and prospects. Mech Ind 13(2):89–96. doi: 10.1051/meca/2012003 CrossRefGoogle Scholar
  2. 2.
    Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal components by laser forming. Int J Mach Tool Manuf 46(12–13):1459–1468. doi: 10.1016/j.ijmachtools.2005.09.005 CrossRefGoogle Scholar
  3. 3.
    Ding J, Colegrove P, Mehnen J, Ganguly S, Sequeira Almeida PM, Wang F, Williams S (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50(12):3315–3322Google Scholar
  4. 4.
    Amon CH, Beuth JL, Weiss LE, Merz R, Prinz FB (1998) Shape deposition manufacturing with microcasting: processing, thermal and mechanical issues. J Manuf Sci Eng Trans ASME 120(3):656–665. doi: 10.1115/1.2830171 CrossRefGoogle Scholar
  5. 5.
    Spencer JD, Dickens PM, Wykes CM (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng B J Eng Manuf 212(3):175–182. doi: 10.1243/0954405981515590 CrossRefGoogle Scholar
  6. 6.
    Clark D, Bache MR, Whittaker MT (2008) Shaped metal deposition of a nickel alloy for aero engine applications. J Mater Process Technol 203(1–3):439–448. doi: 10.1016/j.jmatprotec.2007.10.051 CrossRefGoogle Scholar
  7. 7.
    Brandl E, Baufeld B, Leyens C, Gault R (2010) Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia 5:595–606. doi: 10.1016/j.phpro.2010.08.087 CrossRefGoogle Scholar
  8. 8.
    Karunakaran KP, Suryakumar S, Pushpa V, Akula S (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf 26(5):490–499. doi: 10.1016/j.rcim.2010.03.008 CrossRefGoogle Scholar
  9. 9.
    Xiong XH, Zhang HO, Wang GL, Wang GX (2010) Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy. Robot Comput Integr Manuf 26(4):291–295. doi: 10.1016/j.rcim.2009.10.002 CrossRefGoogle Scholar
  10. 10.
    Mohammadhosseini A, Fraser D, Masood SH, Jahedi M (2013) Microstructure and mechanical properties of Ti–6Al–4V manufactured by electron beam melting process. Mater Res Innov 17(Suppl 2):s106–s112. doi: 10.1179/1432891713z.000000000302 CrossRefGoogle Scholar
  11. 11.
    Edwards P, Ramulu M (2014) Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Mater Sci Eng A 598:327–337. doi: 10.1016/j.msea.2014.01.041 CrossRefGoogle Scholar
  12. 12.
    Radaj D (1992) Heat effects of welding: temperature field, residual stress, distortion. Springer Berlin, Berlin, pp 263–265CrossRefGoogle Scholar
  13. 13.
    Brückner F, Lepski D, Beyer E (2007) Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding. J Therm Spray Technol 16(3):355–373CrossRefGoogle Scholar
  14. 14.
    Mughal MP, Fawad H, Mufti R (2006) Finite element prediction of thermal stresses and deformations in layered manufacturing of metallic parts. Acta Mech 183(1–2):61–79. doi: 10.1007/s00707-006-0329-4 CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhao H, Zhang G, Yin Z, Wu L (2011) A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol 211(3):488–495. doi: 10.1016/j.jmatprotec.2010.11.002 CrossRefGoogle Scholar
  16. 16.
    Zhao H, Zhang G, Yin Z, Wu L (2012) Three-dimensional finite element analysis of thermal stress in single-pass multi-layer weld-based rapid prototyping. J Mater Process Technol 212(1):276–285. doi: 10.1016/j.jmatprotec.2011.09.012 CrossRefGoogle Scholar
  17. 17.
    Ding J, Colegrove P, Mehnen J, Williams S, Wang F, Almeida PS (2014) A computationally efficient finite element model of wire and arc additive manufacture. Int J Adv Manuf Technol 70(2–4):227–236CrossRefGoogle Scholar
  18. 18.
    Bai X, Zhang H, Wang G (2013) Improving prediction accuracy of thermal analysis for weld-based additive manufacturing by calibrating input parameters using IR imaging. Int J Adv Manuf Technol. doi: 10.1007/s00170-013-5102-y Google Scholar
  19. 19.
    Cho K-H (2012) Coupled electro-magneto-thermal model for induction heating process of a moving billet. Int J Therm Sci 60:195–204. doi: 10.1016/j.ijthermalsci.2012.05.003 CrossRefGoogle Scholar
  20. 20.
    Biro O, Preis K (1989) On the use of the magnetic vector potential in the finite-element analysis of three-dimensional eddy currents. IEEE Trans Magn 25(4):3145–3159CrossRefGoogle Scholar
  21. 21.
    Goldak J, Chakravarti AP, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B 15B(2):299–305CrossRefGoogle Scholar
  22. 22.
    Abid M, Siddique M (2005) Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint. Int J Press Vessel Pip 82(11):860–871. doi: 10.1016/j.ijpvp.2005.06.008 CrossRefGoogle Scholar
  23. 23.
    Ferro P, Berto F, Lazzarin P (2006) Generalized stress intensity factors due to steady and transient thermal loads with applications to welded joints. Fatigue Fract Eng Mater 29(6):440–453. doi: 10.1111/j.1460-2695.2006.01015.x CrossRefGoogle Scholar
  24. 24.
    Heinze C, Schwenk C, Rethmeier M (2012) Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion. Simul Model Pract Theory 20(1):112–123. doi: 10.1016/j.simpat.2011.09.004 CrossRefGoogle Scholar
  25. 25.
    Gale WF, Totemeier TC (2003) Smithells metals reference book. Butterworth-Heinemann, Oxford, pp 14–27Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversity of South ChinaHengyangChina
  2. 2.State Key Laboratory of Digital Manufacturing Equipment and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations