Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces

  • Ali ZahediEmail author
  • Taghi Tawakoli
  • Bahman Azarhoushang
  • Javad Akbari


Laser treatment is a novel and promising non-conventional method to reduce the conditioning costs and time of superabrasive tools. In this study, the thermal effects of picosecond laser radiation on metal-bonded cubic boron nitride (CBN) and diamond superabrasive tool surfaces have been analytically and experimentally investigated. The analytical approach is intended to find threshold process parameters for the selective ablation of the superabrasive grains and the bond material. The laser radiation experiments have been conducted with a picosecond Yb:YAG laser on metal-bonded CBN and diamond honing tools. It has been analytically and experimentally demonstrated that, using suitable parameters, the selective and controlled treatment of superabrasive tool components is possible.


Picosecond Yb:YAG laser Metal bond Superabrasive tool Thermal ablation Laser dressing Laser conditioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marinescu ID, Hitchiner MP, Uhlmann E et al. (2006) Handbook of machining with grinding wheels. Taylor & FrancisGoogle Scholar
  2. 2.
    Syoji K (1989) Truing and dressing of superabrasive wheels. Mach Tools 2:18–26Google Scholar
  3. 3.
    Liu X Study of high speed electrolytic in-process dressing. PhD dissertationGoogle Scholar
  4. 4.
    Mullett FC The dressing of metal bonded cbn grinding wheels using electro-discharge machining. PhD dissertationGoogle Scholar
  5. 5.
    Ramesh Babu N, Radhakrishnan V, Murti YVGS (1989) Investigations on laser dressing of grinding wheels—part I: preliminary study. J Eng Ind 111(3):244. doi: 10.1115/1.3188756 CrossRefGoogle Scholar
  6. 6.
    Ramesh Babu N, Radhakrishnan V (1989) Investigations on laser dressing of grinding wheels—part II: grinding performance of a laser dressed aluminum oxide wheel. J Eng Ind 111(3):253. doi: 10.1115/1.3188757 CrossRefGoogle Scholar
  7. 7.
    Dahotre NB, Harimkar SP (2008) Laser fabrication and machining of materials. Springer Science+Business Media, New YorkGoogle Scholar
  8. 8.
    Westkämper E (1995) Grinding assisted by Nd:YAG lasers. CIRP Ann Manuf Technol 44(1):317–320. doi: 10.1016/S0007-8506(07)62333-6 CrossRefGoogle Scholar
  9. 9.
    Chen M, Sun F, Lee Y et al (2003) Laser-assisted grinding wheel dressing (II)—experimental researches. J Mater Sci Technol 19:167–168Google Scholar
  10. 10.
    Ramesh Babu N, Radhakrishnan V (1995) Influence of dressing feed on the performance of laser dressed Al2O3 wheel in wet grinding. Int J Mach Tools Manuf 35(5):661–671. doi: 10.1016/0890-6955(95)93036-6 CrossRefGoogle Scholar
  11. 11.
    Zhang C, Shin Y (2002) A novel laser-assisted truing and dressing technique for vitrified CBN wheels. Int J Mach Tools Manuf 42(7):825–835. doi: 10.1016/S0890-6955(02)00014-7 CrossRefGoogle Scholar
  12. 12.
    Zhang C, Shin YC (2003) Wear of diamond dresser in laser assisted truing and dressing of vitrified CBN wheels. Int J Mach Tools Manuf 43(1):41–49. doi: 10.1016/S0890-6955(02)00161-X CrossRefGoogle Scholar
  13. 13.
    Tian Y, Shin YC (2007) Thermal modelling and experimental evaluation of laser-assisted dressing of superabrasive grinding wheels. Proc Inst Mech Eng B J Eng Manuf 221(4):605–616. doi: 10.1243/09544054JEM713 CrossRefGoogle Scholar
  14. 14.
    Hoffmeister HW, Timmer J (2000) Laser conditioning of superabrasive grinding wheels. Ind Diam Rev 60(7):209–218Google Scholar
  15. 15.
    Jackson MJ, Robinson GM, Chen X (2006) Laser surface preparation of vitrified grinding wheels. J Mater Eng Perform 15(2):247–250. doi: 10.1361/105994906X95968 CrossRefGoogle Scholar
  16. 16.
    Chen X, Feng ZJ, Pashby IR (2004) A study on laser cleaning of Al2O3 grinding wheels. KEM 257–258:359–364. doi: 10.4028/ CrossRefGoogle Scholar
  17. 17.
    Jackson MJ, Khangar A, Chen X et al (2007) Laser cleaning and dressing of vitrified grinding wheels. J Mater Process Technol 185(1–3):17–23. doi: 10.1016/j.jmatprotec.2006.03.109 CrossRefGoogle Scholar
  18. 18.
    Xie X, Chen G, Li L (2004) Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser. Optics Laser Technol 36(5):409–419. doi: 10.1016/j.optlastec.2003.11.002 CrossRefGoogle Scholar
  19. 19.
    Sheikh-Ahmad J (2009) Machining of polymer matrix composites, 1st edn. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Hosokawa A, Ueda T, Yunoki T (2006) Laser dressing of metal bonded diamond wheel. CIRP Ann Manuf Technol 55(1):329–332. doi: 10.1016/S0007-8506(07)60428-4 CrossRefGoogle Scholar
  21. 21.
    Chen G, Mei L, Zhang B et al (2010) Experiment and numerical simulation study on laser truing and dressing of bronze-bonded diamond wheel. Opt Lasers Eng 48(3):295–304. doi: 10.1016/j.optlaseng.2009.11.006 CrossRefGoogle Scholar
  22. 22.
    Khangar AA, Kenik EA, Dahotre NB (2005) Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceram Int 31(4):621–629. doi: 10.1016/j.ceramint.2004.08.013 CrossRefGoogle Scholar
  23. 23.
    Khangar A, Dahotre NB, Jackson MJ et al (2006) Laser dressing of alumina grinding wheels. J Mater Eng Perform 15(2):178–181. doi: 10.1361/105994906X95832 CrossRefGoogle Scholar
  24. 24.
    Dold C, Transchel R, Rabiey M et al (2011) A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources. CIRP Ann Manuf Technol 60(1):363–366. doi: 10.1016/j.cirp.2011.03.117 CrossRefGoogle Scholar
  25. 25.
    Rabiey M, Dold C, Transchel R et al (2011) Influence of picosecond laser touch dressing of electroplated diamond wheels on the dressing of SiC vitrified bond wheel. AMR 325:189–194. doi: 10.4028/ CrossRefGoogle Scholar
  26. 26.
    Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. Society of Manufacturing EngineersGoogle Scholar
  27. 27.
    Younis MA, Alawi H (1984) Probabilistic analysis of the surface grinding process. Trans Can Soc Mech Eng 8(4):208–213Google Scholar
  28. 28.
    Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites. PhD dissertation, Universität StuttgartGoogle Scholar
  29. 29.
    Rabiey M (2010) Dry grinding with cbn wheels, the effect of structuring. PhD dissertation, Universität StuttgartGoogle Scholar
  30. 30.
    Matthias E, Reichling M, Siegel J et al (1994) The influence of thermal diffusion on laser ablation of metal films. Appl Phys A 58(2):129–136. doi: 10.1007/BF00332169 CrossRefGoogle Scholar
  31. 31.
    Wang XY, Wu YB, Wang J et al (2005) Absorbed energy in laser truing of a small vitrified CBN grinding wheel. J Mater Process Technol 164–165:1128–1133. doi: 10.1016/j.jmatprotec.2005.02.108 CrossRefGoogle Scholar
  32. 32.
    Çengel YA, Boles MA (2002) Thermodynamics. An engineering approach, 4th edn. McGraw-Hill, Boston, McGraw-Hill series in mechanical engineeringGoogle Scholar
  33. 33.
    Mei LF, Chen GY, Zhang B et al (2009) Measurement of YAG laser absorptance by artificial diamond and cubic boron nitride. Optics Laser Technol 41(6):770–777. doi: 10.1016/j.optlastec.2008.12.011 CrossRefGoogle Scholar
  34. 34.
    Incropera FP (2011) Introduction to heat transfer, 6th edn. Wiley, HobokenGoogle Scholar
  35. 35.
    Lewandowska M (2001) Hyperbolic heat conduction in the semi-infinite body with a time-dependent laser heat source. Heat Mass Transf 37(4–5):333–342. doi: 10.1007/s002310000176 CrossRefGoogle Scholar
  36. 36.
    Moosaie A, Atefi G, Fardad AA (2008) Two-dimensional non-fourier heat conduction with arbitrary initial and periodic boundary conditions. Forsch Ingenieurwes 72(2):67–76. doi: 10.1007/s10010-008-0068-x CrossRefGoogle Scholar
  37. 37.
    Rüttimann C, Dürr U (2012) Efficient laser welding of copper. Laser + Photonics: 70–72Google Scholar
  38. 38.
    Wegener K, Hoffmeister H, Karpuschewski B et al (2011) Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol 60(2):757–777. doi: 10.1016/j.cirp.2011.05.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ali Zahedi
    • 1
    • 2
    Email author
  • Taghi Tawakoli
    • 2
  • Bahman Azarhoushang
    • 2
  • Javad Akbari
    • 1
  1. 1.Center of Excellence in Design, Robotics and Automation, School of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Institute of Grinding and Precision Technology (KSF)Furtwangen University of applied sciencesSchwenningenGermany

Personalised recommendations