Advertisement

Toward mass production of microtextured microdevices: linking rapid prototyping with microinjection molding

  • Andrés Díaz Lantada
  • Volker Piotter
  • Klaus Plewa
  • Nicole Barié
  • Markus Guttmann
  • Markus Wissmann
ORIGINAL ARTICLE
  • 342 Downloads

Abstract

The possibility of manufacturing textured materials and devices, with surface properties controlled from the design stage, instead of being the result of machining processes or chemical attacks, is a key factor for the incorporation of advanced functionalities to a wide set of micro- and nanosystems. Recently developed high-precision additive manufacturing technologies, together with the use of fractal models linked to computer-aided design tools, allow for a precise definition and control of final surface properties for a wide set of applications, although the production of larger series based on these resources is still an unsolved challenge. However, rapid prototypes, with controlled surface topography, can be used as original masters for obtaining micromold inserts for final large-scale series manufacture of replicas using microinjection molding. In this study, an original procedure is presented, aimed at connecting rapid prototyping with microinjection molding, for the mass production of two different microtextured microsystems, linked to tissue engineering tasks, using different thermoplastics as ultimate materials.

Keywords

Fractals Surface topography Material texture Materials design Computer-aided design Additive manufacturing Microinjection molding Mass production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archard J (1974) Surface topography and tribology. Tribol 7(5):213–220Google Scholar
  2. 2.
    Bushan B, Israelachvili J, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607–616CrossRefGoogle Scholar
  3. 3.
    Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  4. 4.
    Buxboim A, Discher DE (2010) Stem cells feel the difference. Nat Methods 7(9):695–697CrossRefGoogle Scholar
  5. 5.
    Berginski M, Hüpkes J, Schulte M, Schöpe G, Stiebig H, Rech B (2007) The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 101:074903CrossRefGoogle Scholar
  6. 6.
    Briones V, Aguilera JM, Brown C (2006) The effect of surface topography on color and gloss of chocolate samples. J Food Eng 77(4):776–783CrossRefGoogle Scholar
  7. 7.
    Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press, New YorkGoogle Scholar
  8. 8.
    Chandra P, Lai K, Sunj HJ, Murthy NS, Kohn J (2010) UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases 5(2):53–59CrossRefGoogle Scholar
  9. 9.
    Martin CR, Aksay IA (2005) Microchannel molding: a soft lithography-inspired approach to micrometer-scale patterning. J Mater Res 20(8):1995–2003CrossRefGoogle Scholar
  10. 10.
    Pulsifier DP, Lakhtakia A (2011) Background and survey of bioreplication techniques. Bioinspiration Biomimetics 6(3):031001CrossRefGoogle Scholar
  11. 11.
    Kwasny W (2009) Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface. J Achiev Mater Manuf Eng 37(2):125–192Google Scholar
  12. 12.
    Jedlicka SS, McKenzie JL, Leavesley SL, Little KM, Webster TJ, Robinson JP, Nivens DE, Rickus JL (2007) Sol-gel derived materials as substrates for neuronal differentiation: effects of surface features and protein conformation. J Mater Chem 16(31):3221–3230CrossRefGoogle Scholar
  13. 13.
    Rahmawan Y, Xu L, Yang S (2013) Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J Mater Chem A 1(9):2955–2969CrossRefGoogle Scholar
  14. 14.
    Gad-el-Hak M (2003) The MEMS handbook. CRC Press, New YorkGoogle Scholar
  15. 15.
    Naik VM, Mukherjee R, Majumder A, Sharma A (2009) Super functional materials: creation and control of wettability, adhesion and optical effects by meso-texturing of surfaces. Current Trends in Science, Platinum Jubilee Special, 129–148Google Scholar
  16. 16.
    Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman, San FranciscozbMATHGoogle Scholar
  17. 17.
    Falconer K (2003) Fractal geometry: mathematical foundations and applications. John Wiley & Sons Ltd Google Scholar
  18. 18.
    Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714CrossRefGoogle Scholar
  19. 19.
    Röhrig M, Thiel M, Worgull M, Hölscher H (2012) Hierarchical structures: 3D direct laser writing of nano-microstructured hierarchical gecko-mimicking surface. Small 8(19):3009–3015CrossRefGoogle Scholar
  20. 20.
    Baudis S, Heller C, Liska R, Stampfl J, Bergmeister H, Weigel G (2009) (Meth)acrylate-based photoelastomers as tailored biomaterials for artificial vascular grafts. J Polym Sci A Polym Chem 47(10):2664–2676CrossRefGoogle Scholar
  21. 21.
    Baudis S, Steyrer B, Pulka T, Wilhelm H, Weigel G, Bergmeister H, Stampfl J, Liska R (2010) Photopolymerizable elastomers for vascular tissue regeneration. Macromol Symp 296(1):121–126CrossRefGoogle Scholar
  22. 22.
    Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M (2008) Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J Micromech Microeng 18:125014CrossRefGoogle Scholar
  23. 23.
    Piotter V, Prokop J, Ritzhaupt-Kleissl H-J, Ruh A, Haußelt J (2010) Multi-component micro injection moulding—trends and developments. Int J Adv Manuf Technol 47:63–71CrossRefGoogle Scholar
  24. 24.
    Piotter V, Prokop J (2014) Galvanic deposition in partially conductive plastic molds for manufacture of finely detailed microcomponents. J Microsyst Technol 20:169–174CrossRefGoogle Scholar
  25. 25.
    Piotter V, Bauer W, Hanemann T, Heckele M, Müller C (2008) Replication technologies for HARM devices—status and perspectives. J Microsyst Technol 14(9–11):1599–1605CrossRefGoogle Scholar
  26. 26.
    Bissacco G, Hansen HN, Tang PT, Fugl J. Precision manufacturing of tools for injection molding of microfluidic systems. Accessed online on the 26th of August 2014: (http://www.aspe.net/publications/Spring_2005/05SPAbs/Bissacco-1676.pdf)
  27. 27.
    Díaz Lantada A, Endrino JL, Mosquera AA, Lafont P (2010) Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J Phys Conf Ser 252(1):012003CrossRefGoogle Scholar
  28. 28.
    Díaz Lantada A (2013) Handbook on advanced design and manufacturing technologies for biomedical devices. Chapter 10. Springer Google Scholar
  29. 29.
    Wissmann, M, Guttmann, M, Hartmann, M, Hofmann, A, Hummel, B (2010) Alternative mould insert fabrication technology for micromoulding by galvanic replication. Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP 2010), Sevilla, May 5–7Google Scholar
  30. 30.
    Guttmann M, Schulz J, Saile V (2005) Lithographic fabrication of mold inserts. In: Baltes H et al (eds) Advanced micro and nanosystems, Vol. 3, microengineering of metals and ceramics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 187–219CrossRefGoogle Scholar
  31. 31.
    Schanz G, Bade K (2005) Microelectroforming of metal. In: Baltes H et al (eds) Advanced micro and nanosystems, Vol. 4, microengineering of metals and ceramics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 395–420CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Andrés Díaz Lantada
    • 1
  • Volker Piotter
    • 2
  • Klaus Plewa
    • 2
  • Nicole Barié
    • 3
  • Markus Guttmann
    • 3
  • Markus Wissmann
    • 3
  1. 1.Product Development Laboratory, Mechanical Engineering & Manufacturing DepartmentUniversidad Politécnica de Madrid (UPM) ( www.upm.es )MadridSpain
  2. 2.Institute of Applied Materials - Materials Process TechnologyKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  3. 3.Institute of Microstructure TechnologyKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations