Design of an electrochemical micromachining machine

  • Alexandre Spieser
  • Atanas IvanovEmail author


Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.


Micro ECM PECM Micro manufacturing Micro ECM machines Electrochemical micromachining (EMM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGeough JA (1974) Principles of electrochemical machining. Chapman and Hall, LondonGoogle Scholar
  2. 2.
    Datta M, Harris D (1997) Electrochemical micromachining: an environmentally friendly, high speed processing technology. 42:3007–3013. doi:  10.1016/S0013-4686(97)00147-3
  3. 3.
    Wei B (1994) Modeling and analysis of pulse electrochemical machining. The University of Nebraska—LincolnGoogle Scholar
  4. 4.
    Rajurkar KP, Kozak J, Wei B, McGeough JA (1993) Study of pulse electrochemical machining characteristics. CIRP Ann Manuf Technol 42:231–234. doi: 10.1016/S0007-8506(07)62432-9 CrossRefGoogle Scholar
  5. 5.
    Rajurkar KP, Wei B, Kozak J, McGeough JA (1995) Modelling and monitoring interelectrode gap in pulse electrochemical machining. CIRP Ann Manuf Technol 44:177–180. doi: 10.1016/S0007-8506(07)62301-4 CrossRefGoogle Scholar
  6. 6.
    Kozak J, Rajurkar KP, Makkar Y (2004) Study of pulse electrochemical micromachining. J Manuf Process 6:7–14. doi: 10.1016/S1526-6125(04)70055-9 CrossRefGoogle Scholar
  7. 7.
    Kozak J, Rajurkar KP, Makkar Y (2004) Selected problems of micro-electrochemical machining. J Mater Process Technol 149:426–431. doi: 10.1016/j.jmatprotec.2004.02.031 CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Zhu D, Qu N, Wang M (2007) Theoretical and experimental investigation on electrochemical micromachining. Microsyst Technol 13:607–612. doi: 10.1007/s00542-006-0369-7 CrossRefGoogle Scholar
  9. 9.
    Kamaraj AB, Sundaram MM (2013) Mathematical modeling and verification of pulse electrochemical micromachining of microtools. Int J Adv Manuf Technol. doi: 10.1007/s00170-013-4896-y Google Scholar
  10. 10.
    Cagnon L, Kirchner V, Kock M et al (2003) Electrochemical micromachining of stainless steel by ultrashort voltage pulses. Z Phys Chem 217:299–314. doi: 10.1524/zpch. CrossRefGoogle Scholar
  11. 11.
    Schuster R, Kirchner V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science (80- ) 289:98–101. doi:  10.1126/science.289.5476.98
  12. 12.
    Schuster R (2007) Electrochemical microstructuring with short voltage pulses. Chemphyschem 8:34–39. doi: 10.1002/cphc.200600401 CrossRefGoogle Scholar
  13. 13.
    Schuster R, Kirchner V (2004) Method for electrochemically processing material. US 6689269 B1Google Scholar
  14. 14.
    Trimmer AL, Hudson JL, Kock M, Schuster R (2003) Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Appl Phys Lett 82:3327. doi: 10.1063/1.1576499 CrossRefGoogle Scholar
  15. 15.
    Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision. Electrochim Acta 48:3213–3219. doi: 10.1016/S0013-4686(03)00374-8 CrossRefGoogle Scholar
  16. 16.
    Li Z, Ji H (2009) Machining accuracy prediction of aero-engine blade in electrochemical machining based on BP neural network. Proc. 2009 Int. Work. Inf. Secur. Appl. (IWISA 2009) ISBN 978-952-5726-06-0. Academy Publisher, Qingdao, pp 9–12Google Scholar
  17. 17.
    Wang M, Zhu D, Qu NS, Zhang CY (2007) Preparation of turbulated cooling hole for gas turbine blade using electrochemical machining. Key Eng Mater 329:699–704. doi: 10.4028/ CrossRefGoogle Scholar
  18. 18.
    Datta M, Landolt D (2000) Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 45:2535–2558. doi: 10.1016/S0013-4686(00)00350-9 CrossRefGoogle Scholar
  19. 19.
    Kamaraj AB, Sundaram MM, Mathew R (2013) Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications. Microsyst Technol 19:179–186. doi: 10.1007/s00542-012-1653-3 CrossRefGoogle Scholar
  20. 20.
    Lu X, Leng Y (2005) Electrochemical micromachining of titanium surfaces for biomedical applications. J Mater Process Technol 169:173–178. doi: 10.1016/j.jmatprotec.2005.04.040 CrossRefGoogle Scholar
  21. 21.
    Bhattacharyya B, Doloi B, Sridhar PS (2001) Electrochemical micro-machining: new possibilities for micro-manufacturing. J Mater Process Technol 113:301–305. doi: 10.1016/S0924-0136(01)00629-X CrossRefGoogle Scholar
  22. 22.
    Spieser A, Ivanov A (2013) Recent developments and research challenges in electrochemical micromachining (μECM). Int J Adv Manuf Technol. doi: 10.1007/s00170-013-5024-8 Google Scholar
  23. 23.
    Winbro Group Technologies (2012) Winbro Group - Systems.Google Scholar
  24. 24.
    EMAG GmbH (2014) EMAG Website—ECM / PECM MachinesGoogle Scholar
  25. 25.
    pECM Systems pECM Systems WebsiteGoogle Scholar
  26. 26.
    Indec (2014) Indec “ET” ECM Machines. Accessed 26 Aug 2014
  27. 27.
    ECMTEC GmbH (2012) ECMTEC WebsiteGoogle Scholar
  28. 28.
    EMAG (2012) MicroECM Machine brochure EMAGGoogle Scholar
  29. 29.
    Wang Y, Chen H, Wang Z, et al (2010) Development of a soft-computer numerical control system for Micro - Electrochemical Machining. 1:51–55Google Scholar
  30. 30.
    Zhang Z, Wang Y, Chen F, Mao W (2011) A micro-machining system based on electrochemical dissolution of material. Russ J Electrochem 47:819–824. doi: 10.1134/S1023193511070172 CrossRefzbMATHGoogle Scholar
  31. 31.
    Huo D, Cheng K (2008) A dynamics-driven approach to the design of precision machine tools for micro-manufacturing and its implementation perspectives. Proc Inst Mech Eng B J Eng Manuf 222:1–13. doi: 10.1243/09544054JEM839 CrossRefGoogle Scholar
  32. 32.
    Nor MKM (2010) Development of the UMAC-based control system with application to 5-axis ultraprecision micromilling machines. Brunel UniveristyGoogle Scholar
  33. 33.
    Stanev PT, Wardle F, Corbett J (2004) Investigation of grooved hybrid air bearing performance. Proc Inst Mech Eng Part J Multi-body Dyn 218:95–106. doi: 10.1243/146441904323074558 CrossRefGoogle Scholar
  34. 34.
    Luo X, Cheng K, Webb D, Wardle F (2005) Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J Mater Process Technol 167:515–528. doi: 10.1016/j.jmatprotec.2005.05.050 CrossRefGoogle Scholar
  35. 35.
    Anorad Linear Motor Division US. A (1999) LE SERIES Motor Integration Manual LEA, LEB, LEC & LEM Linear MotorsGoogle Scholar
  36. 36.
    Zhang YJ, Tang YJ, Liu XK et al (2009) Development of ultra-short pulse power supply applicable to micro-ECM. Mater Sci Forum 626–627:369–374. doi: 10.4028/ CrossRefGoogle Scholar
  37. 37.
    Muetze A, Oh HW (2008) Design aspects of conductive microfiber rings for shaft-grounding purposes. IEEE Trans Ind Appl 44:1749–1757. doi: 10.1109/TIA.2008.2006421 CrossRefGoogle Scholar
  38. 38.
    Barbalace A, Luchetta A, Manduchi G, et al (2007) Performance comparison of VxWorks, Linux, RTAI and Xenomai in a hard real-time application. Nuclear Science, IEEE Transactions 55(1): 435-439 doi: 10.1109/TNS.2007.905231
  39. 39.
    Burkert S, Schulze H, Gmelin T, Leone M (2009) The pulse electrochemical micromachining (PECMM)—specifications of the pulse units. Int J Mater Form 2:645–648. doi: 10.1007/s12289-009-0464-2 CrossRefGoogle Scholar
  40. 40.
    Fan Z-W, Hourng L-W, Lin M-Y (2012) Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage. Int J Adv Manuf Technol 61:957–966. doi: 10.1007/s00170-011-3778-4 CrossRefGoogle Scholar
  41. 41.
    Park BJ, Kim BH, Chu CN (2006) The effects of tool electrode size on characteristics of micro electrochemical machining. CIRP Ann Manuf Technol 55:197–200. doi: 10.1016/S0007-8506(07)60397-7 CrossRefGoogle Scholar
  42. 42.
    Spieser A, Ivanov A (2014) Design of a pulse power supply unit for micro ECM. Int J Adv Manuf Technol doi: 10.1007/s00170-014-6322-5
  43. 43.
    Mithu MAH, Fantoni G, Ciampi J, Santochi M (2012) On how tool geometry, applied frequency and machining parameters influence electrochemical microdrilling. CIRP J Manuf Sci Technol 5:202–213. doi: 10.1016/j.cirpj.2012.07.006 CrossRefGoogle Scholar
  44. 44.
    Shin HS, Kim BH, Chu CN (2008) Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses. J Micromech Microeng 18:075009. doi: 10.1088/0960-1317/18/7/075009 CrossRefGoogle Scholar
  45. 45.
    Labib AW, Keasberry VJ, Atkinson J, Frost HW (2011) Expert systems with applications towards next generation electrochemical machining controllers: a fuzzy logic control approach to ECM. Expert Syst Appl 38:7486–7493. doi: 10.1016/j.eswa.2010.12.074 CrossRefGoogle Scholar
  46. 46.
    Çaydaş U, Hasçalık A, Ekici S (2009) An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Syst Appl 36:6135–6139. doi: 10.1016/j.eswa.2008.07.019 CrossRefGoogle Scholar
  47. 47.
    Lin C-T, Chung I-F, Huang S-Y (2001) Improvement of machining accuracy by fuzzy logic at corner parts for wire-EDM. Fuzzy Sets Syst 122:499–511. doi: 10.1016/S0165-0114(00)00034-8 CrossRefMathSciNetGoogle Scholar
  48. 48.
    Mediliyegedara TKKR, De Silva AKM, Harrison DK, McGeough JA (2005) New developments in the process control of the hybrid electro chemical discharge machining (ECDM) process. J Mater Process Technol 167:338–343. doi: 10.1016/j.jmatprotec.2005.05.043 CrossRefGoogle Scholar
  49. 49.
    Skrabalak G, Zybura-Skrabalak M, Ruszaj A (2004) Building of rules base for fuzzy-logic control of the ECDM process. J Mater Process Technol 149:530–535. doi: 10.1016/j.jmatprotec.2003.11.058 CrossRefGoogle Scholar
  50. 50.
    Lee ES, Baek SY, Cho CR (2007) A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. Int J Adv Manuf Technol 31:762–769. doi: 10.1007/s00170-005-0247-y CrossRefGoogle Scholar
  51. 51.
    Sen M, Shan HS (2005) A review of electrochemical macro- to micro-hole drilling processes. Int J Mach Tools Manuf 45:137–152. doi: 10.1016/j.ijmachtools.2004.08.005 CrossRefGoogle Scholar
  52. 52.
    Kirchner V, Cagnon L, Schuster R, Ertl G (2001) Electrochemical machining of stainless steel microelements with ultrashort voltage pulses. Appl Phys Lett 79:1721. doi: 10.1063/1.1401783 CrossRefGoogle Scholar
  53. 53.
    Bilgi DS, Jain VK, Shekhar R, Kulkarni AV (2006) Hole quality and interelectrode gap dynamics during pulse current electrochemical deep hole drilling. Int J Adv Manuf Technol 34:79–95. doi: 10.1007/s00170-006-0572-9 CrossRefGoogle Scholar
  54. 54.
    Zemann R, Reiss PW, Schörghofer P, Bleicher F (2012) Cutting edge research in new technologies—chapter 1: some contributions at the technology of electrochemical micromachining with ultra short voltage pulses. 3–29. doi:  10.5772/33560
  55. 55.
    Mukherjee SK, Kumar S, Srivastava PK (2005) Effect of over voltage on material removal rate during electrochemical machining. 8:23–28Google Scholar
  56. 56.
    Mithu MAH, Fantoni G, Ciampi J (2011) The effect of high frequency and duty cycle in electrochemical microdrilling. Int J Adv Manuf Technol 55:921–933. doi: 10.1007/s00170-010-3123-3 CrossRefGoogle Scholar
  57. 57.
    Haisch T (2002) High rate electrochemical dissolution of iron- based alloys in NaCl and NaNO3 electrolytes. Max-Planck-Institut für Metallforschung StuttgartGoogle Scholar
  58. 58.
    Lu Y, Liu K, Zhao D (2010) Experimental investigation on monitoring interelectrode gap of ECM with six-axis force sensor. Int J Adv Manuf Technol 55:565–572. doi: 10.1007/s00170-010-3105-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.School of Engineering & Design, Advanced Manufacturing and Enterprise EngineeringBrunel UniversityUxbridgeUK

Personalised recommendations