Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining

ORIGINAL ARTICLE

Abstract

Wire electrical discharge machining (WEDM) is an important technology, which demands high-speed cutting and high-precision machining to realize productivity and improved accuracy for manufacturing hard materials. WEDM has experienced explosive growth and complexity of equipment as well as rising demand for the basic process tool (the wire electrode). Greater taper angles, thicker workpieces, automatic wire threading, and long periods of unattended operation make the selection of the ideal wire a much more critical basis for achieving successful operation. This paper focuses on the evolution of EDM wire electrode technologies from using copper to the widely employed brass wire electrodes and from brass wire electrodes to the latest coated wire electrodes. Wire electrodes have been developed to help user demand and needs through maximum productivity and quantity by choosing the best wire. In the final part of the paper, the possible trends for future WEDM electrode research are discussed.

Keywords

WEDM Coated wires Brass wires Steel wires Diffusion annealed Composite wire electrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kanlayasiri K, Boonmung S (2007) Effects of wire-EDM machining variables on surface roughness of newly developed DC 53 die steel: design of experiments and regression model. Journal of Materials Processing Technology 192–193:459–464CrossRefGoogle Scholar
  2. 2.
    Davim JP (2008) Machining fundamentals and recent advances. Springer-Verlag London Limited, British Library Cataloguing in Publication Data. doi:10.1007/978-1-84800-213-5Google Scholar
  3. 3.
    Patil N, Brahmankar PK (2010) Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis. Int J Adv Manuf Technol 51(5-8):599–610. doi:10.1007/s00170-010-2633-3 CrossRefGoogle Scholar
  4. 4.
    Huang Y, Ming W, Guo J, Zhang Z, Liu G, Li M, Zhang G (2013) Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses. Int J Adv Manuf Technol 69(5–8):993–1008. doi:10.1007/s00170-013-5037-3 CrossRefGoogle Scholar
  5. 5.
    Saha P, Tarafdar D, Pal S, Saha P, Srivastava A, Das K (2009) Modeling of wire electro-discharge machining of TiC/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique. Int J Adv Manuf Technol 43(1–2):107–116. doi:10.1007/s00170-008-1679-y CrossRefGoogle Scholar
  6. 6.
    Mohri N, Fukuzawa Y, Tani T, Sata T (2002) Some considerations to machining characteristics of insulating ceramics-towards practical use in industry. CIRP Annals - Manufacturing Technology 51(1):161–164. doi:10.1016/S0007-8506(07)61490-5 CrossRefGoogle Scholar
  7. 7.
    Muttamara A, Fukuzawa Y, Mohri N, Tani T (2003) Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. Journal of Materials Processing Technology 140(1–3):243–247. doi:10.1016/S0924-0136(03)00745-3 CrossRefGoogle Scholar
  8. 8.
    Kozak J, Rajurkar KP, Chandarana N (2004) Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). Journal of Materials Processing Technology 149:266–271CrossRefGoogle Scholar
  9. 9.
    Wüthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon—an overview. International Journal of Machine Tools and Manufacture 45(9):1095–1108. doi:10.1016/j.ijmachtools.2004.11.011 CrossRefGoogle Scholar
  10. 10.
    Motoki M, Summer K (1978) Recent EDM. J Japan Soc Electrical Machining Engrs 11:2–20CrossRefGoogle Scholar
  11. 11.
    Kapoor J, Singh S, Khamba JS (2012) High-performance wire electrodes for wire electrical-discharge machining—a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226(11):1757–1773. doi:10.1177/0954405412460354 CrossRefGoogle Scholar
  12. 12.
    Paul CP, Kumar A, Bhargava P, Kukreja LM (2013) Nontraditional machining processes—research advances. Springer-Verlag London. doi:10.1007/978-1-4471-5179-1 Google Scholar
  13. 13.
    Ho KH, Newman ST, Rahimifard S, Allen RD (2004) State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture 44(12–13):1247–1259. doi:10.1016/j.ijmachtools.2004.04.017 CrossRefGoogle Scholar
  14. 14.
    Kapoor J, Singh S, Khamba JS (2010) Recent developments in wire electrodes for high performance WEDM. Paper presented at the Proceedings of the World Congress on Engineering, LondonGoogle Scholar
  15. 15.
    Kwon S, Yang M-Y (2006) The benefits of using instantaneous energy to monitor the transient state of the wire EDM process. Int J Adv Manuf Technol 27(9–10):930–938. doi:10.1007/s00170-004-2252-y CrossRefGoogle Scholar
  16. 16.
    Hargrove SK, Ding D (2007) Determining cutting parameters in wire EDM based on workpiece surface temperature distribution. Int J Adv Manuf Technol 34(3–4):295–299. doi:10.1007/s00170-006-0609-0 CrossRefGoogle Scholar
  17. 17.
    Jangra K, Grover S, Aggarwal A (2011) Digraph and matrix method for the performance evaluation of carbide compacting die manufactured by wire EDM. Int J Adv Manuf Technol 54(5–8):579–591CrossRefGoogle Scholar
  18. 18.
    Moulton DB (1999) Wire EDM the fundamentals. Sugar Grove, IL: EDM network (www.notebookmanuals. bestmanual guide. Com)
  19. 19.
    El-Hofy H (2005) Advanced machining processes. McGraw-Hill. doi:10.1036/0071466940 Google Scholar
  20. 20.
    Sommer C, Sommer S (2005) Complete EDM handbook. Advance PubGoogle Scholar
  21. 21.
    Kern R (2008) EDM wire selection. EDM Today:12–16Google Scholar
  22. 22.
    Garg R (2010) Effect of process parameters on performance measures of wire electrical discharge machining. National institute of technology, kurukshetraGoogle Scholar
  23. 23.
    Jangra K, Grover S, Chan FT, Aggarwal A (2011) Digraph and matrix method to evaluate the machinability of tungsten carbide composite with wire EDM. Int J Adv Manuf Technol 56(9–12):959–974CrossRefGoogle Scholar
  24. 24.
    Somashekhar K, Ramachandran N, Mathew J (2010) Material removal characteristics of microslot (kerf) geometry in μ-WEDM on aluminum. Int J Adv Manuf Technol 51(5–8):611–626. doi:10.1007/s00170-010-2645-z CrossRefGoogle Scholar
  25. 25.
    Dauw DF, Albert L (1992) About the evolution of wire tool performance in wire EDM. CIRP Annals - Manufacturing Technology 41(1):221–225. doi:10.1016/S0007-8506(07)61190-1 CrossRefGoogle Scholar
  26. 26.
    Aoyama S, Tamura K, Sato T, Kimura T, Sawahata K, Nagai T (1999) High-performance coated wire electrodes for high-speed cutting and accurate machining. Hitachi Cable Review 18:75–80Google Scholar
  27. 27.
    Aoyama S (2001) Development of high performance wire electrode for wire electric discharge machining. J Japan Soc Electrical Machining Engrs 35:46–51CrossRefGoogle Scholar
  28. 28.
    Davis JR (1998) Metals handbook desk edition. 2 edn. ASM International Handbook CommitteeGoogle Scholar
  29. 29.
    Yan M-T, Huang P-H (2004) Accuracy improvement of wire-EDM by real-time wire tension control. International Journal of Machine Tools and Manufacture 44(7–8):807–814. doi:10.1016/j.ijmachtools.2004.01.019 CrossRefGoogle Scholar
  30. 30.
    Kern R (2013) EDM wire primer. http://www.edmtodaymagazine.com/
  31. 31.
    Gedeon M (2011) Strip Vs wire. Technical Tidbits 3 (11)Google Scholar
  32. 32.
    Lin P, Liao T-T (2009) An effective-wire-radius compensation scheme for enhancing the precision of wire-cut electrical discharge machines. Int J Adv Manuf Technol 40(3–4):324–331. doi:10.1007/s00170-007-1333-0 CrossRefGoogle Scholar
  33. 33.
    Uhlmann E, Roehner M (2008) Investigations on reduction of tool electrode wear in micro-EDM using novel electrode materials. CIRP Journal of Manufacturing Science and Technology 1(2):92–96. doi:10.1016/j.cirpj.2008.09.011 CrossRefGoogle Scholar
  34. 34.
    Groos H (1988) Wire electrode for the spark erosive cutting. US 4766280 AGoogle Scholar
  35. 35.
    Walder G, Balleys F (1999) Wire electrode arrangement for electroerosive cutting. US 5882490 AGoogle Scholar
  36. 36.
    Gonnissen D, Van Vooren W (2001) Electric discharge machining wire. WO Patent 2,001,089,750Google Scholar
  37. 37.
    Inoue K (1983) Electroerosive wire-cutting method and apparatus with a shaped wire electrode. US 4418263 AGoogle Scholar
  38. 38.
    Inoue K (1985) Traveling-wire EDM method. US 4508604 AGoogle Scholar
  39. 39.
    Seong K (1999) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire. WO Patent 1,999,006,183Google Scholar
  40. 40.
    Groos H, Barthel B, Noethe T, Dietrich C (2004) Wire electrode with a structured interface surface. US 6794597 B2Google Scholar
  41. 41.
    Gonnissen D, Vooren WV (2005) Electric discharge machining wire. US 6,875,943 B2Google Scholar
  42. 42.
    Kaneko H, Onoue M (1984) Electrode material for travelling-wire type electrical discharge machining. US4424432 AGoogle Scholar
  43. 43.
    Makino Y, Obara H, Ohsumi T, Niwa S (1995) Single discharging force and machining volume of Wire EDM. J Japan Soc Electrical Machining Engrs 30:1–10CrossRefGoogle Scholar
  44. 44.
    Herreroa A, Azcaratea S, Reesb A, Gehringerc A, Schothc A, Sanchezd JA (2008) Influence of force components on thin wire EDM. Multi-Material Micro ManufactureGoogle Scholar
  45. 45.
    Weng FT, Her MG (2002) Study of the batch production of micro parts using the EDM process. Int J Adv Manuf Technol 19(4):266–270. doi:10.1007/s001700200033 CrossRefGoogle Scholar
  46. 46.
    Prohaszka J, Mamalis AG, Vaxevanidis NM (1997) The effect of electrode material on machinability in wire electro-discharge machining. Journal of Materials Processing Technology 69(1–3):233–237. doi:10.1016/S0924-0136(97)00024-1 CrossRefGoogle Scholar
  47. 47.
    Tosun N, Cogun C, Pihtili H (2003) The effect of cutting parameters on wire crater sizes in wire EDM. Int J Adv Manuf Technol 21(10–11):857–865. doi:10.1007/s00170-002-1404-1 CrossRefGoogle Scholar
  48. 48.
    Tosun N (2003) The effect of the cutting parameters on performance of WEDM. KSME International Journal 17(6):816–824. doi:10.1007/BF02983395 Google Scholar
  49. 49.
    Aoyama S, Kuroda H, Seya O, Kimura T, Sato T (2008) Development and applications of high-strength-high conductivity copper alloy wire formed by continuous casting and hot rolling. Hitachi Cable Review 2:102–102Google Scholar
  50. 50.
    Obara H, Ohsumi T, Masahashi Y, Miyanishi S, Hatano M (2002) Fundamental study of accuracy of wire EDM (6th report)—study of EDM conditions and servo feed function of finish cut. J Japan Soc Electrical Machining Engrs 36:15–23CrossRefGoogle Scholar
  51. 51.
    Otsuka Y, Y N, M N, T M, N O, H K (2001) Development of high-speed electrode wire for wire electro-discharge machining. SEI Tech Rev 51:133–136Google Scholar
  52. 52.
    Kuroda H, Aoyama S, Kimura T, Sawahata K, Sato T (2003) Development of high performance coated wire electrodes for high-speed cutting and accurate machining. Hitachi Cable Review 22:51–56Google Scholar
  53. 53.
    Hiromitsu K, Seigi A, Takamitsu K, Katsunori S, Takahiro S (2003) Electrode wires for wire discharge processing with excellent high speed and high precision processing. Hitachi Densen 22:55–60Google Scholar
  54. 54.
    Morita M, Yamauchi T, Okada A, Uno Y, Shimizu T (2005) Fundamental study on coating wire electrode for high performance WEDM (electrical machining). Proceedings of International Conference on Leading Edge Manufacturing in 21st century: LEM21 2005(2):779–782Google Scholar
  55. 55.
    Yamauchi T, Okada A, Morita M, Shimizu T, Uno Y (2005) Development of coating wire electrode for high performance WEDM (1st report)—fundamental WEDM characteristics of coating wire. J Japan Soc Electrical Machining Engrs 39:28–35CrossRefGoogle Scholar
  56. 56.
    Obara H (1989) The analysis of wire break down limitation on wire EDM (1st report; analysis of water flow in cut groove). J Japan Soc Electrical Machining Engrs 22:10–22CrossRefGoogle Scholar
  57. 57.
    Obara H, Abe M, Ohsumi T (1997) Prevention of wire breakage on Wire EDM—1st report: comparison of spark gap detecting signals on Wire EDM. J Japan Soc Electrical Machining Engrs 31:11–17CrossRefGoogle Scholar
  58. 58.
    Kern R (2007) Improving wire EDM productivity. EDM Today:10-14Google Scholar
  59. 59.
    Obara H, Yamada M, Ohsumi T, Hatano M (2002) Prevention of wire breakage during wire EDM (3rd report)—discharge location and discharge voltage in case of high current discharge. J Japan Soc Electrical Machining Engrs 36:24–30CrossRefGoogle Scholar
  60. 60.
    Kinoshita N, Fukui M, Gamo G (1982) Control of wire-EDM preventing electrode from breaking. CIRP Annals - Manufacturing Technology 31(1):111–114. doi:10.1016/S0007-8506(07)63279-X CrossRefGoogle Scholar
  61. 61.
    Rajurkar KP, Wang WM, Lindsay RP (1991) On-line monitor and control for wire breakage in WEDM. CIRP Annals - Manufacturing Technology 40(1):219–222. doi:10.1016/S0007-8506(07)61972-6 CrossRefGoogle Scholar
  62. 62.
    Luo YF (1999) Rupture failure and mechanical strength of the electrode wire used in wire EDM. Journal of Materials Processing Technology 94(2–3):208–215. doi:10.1016/S0924-0136(99)00107-7 CrossRefGoogle Scholar
  63. 63.
    Schacht B (2004) Composite wire electrodes and alternative dielectric for wire electrical discharge machining Katholieke Leuven, BelgiumGoogle Scholar
  64. 64.
    Sánchez JA, Ortega N (2009) Machine tools for high performance machining. Machine Tools for High Performance Machining Springer London. doi:10.1007/978-1-84800-380-4_9 Google Scholar
  65. 65.
    Schuler GH (1998) Metal forming handbook. Springer-Verlag Berlin Heidelberg, New YorkCrossRefGoogle Scholar
  66. 66.
    Wright RN (2010) Wire technology: process engineering and metallurgy. 1 edn. Butterworth-HeinemannGoogle Scholar
  67. 67.
    Kern R (2013) The art and science of making EDM wire. http://www.edmtodaymagazine.com/
  68. 68.
    Intech E (1995) EDM wire: a reference to understanding, selecting and using wire on wire-cut EDM machines. USAGoogle Scholar
  69. 69.
    Wang J, Ravani B (2003) Computer aided contouring operation for traveling wire electric discharge machining (EDM). Computer-Aided Design 35(10):925–934. doi:10.1016/S0010-4485(02)00207-5 CrossRefGoogle Scholar
  70. 70.
    Antar MT, Soo SL, Aspinwall DK, Jones D, Perez R (2011) Productivity and workpiece surface integrity when WEDM aerospace alloys using coated wires. Procedia Engineering 19:3–8. doi:10.1016/j.proeng.2011.11.071 CrossRefGoogle Scholar
  71. 71.
    Singh S, Maheshwari S, Pandey PC (2004) Some investigations into the electric discharge machining of hardened tool steel using different electrode materials. Journal of Materials Processing Technology 149(1–3):272–277. doi:10.1016/j.jmatprotec.2003.11.046 CrossRefGoogle Scholar
  72. 72.
    Altpeter F, Perez R (2004) Relevant topics in wire electrical discharge machining control. Journal of Materials Processing Technology 149(1–3):147–151. doi:10.1016/j.jmatprotec.2003.10.033 CrossRefGoogle Scholar
  73. 73.
    Fowle FF (1933) Process of treating zinc coated wire. US 1,896,613Google Scholar
  74. 74.
    Groos H, Barthel B, Noethe T, Dietrich C (2004) Wire electrode for spark erosion cutting. US 6,781,081 B2Google Scholar
  75. 75.
    Kruth JP, Lauwers B, Schacht B, Van Humbeeck J (2004) Composite wires with high tensile core for wire EDM. CIRP Annals - Manufacturing Technology 53(1):171–174. doi:10.1016/S0007-8506(07)60671-4 CrossRefGoogle Scholar
  76. 76.
    Kuriakose S, Shunmugam MS (2004) Characteristics of wire-electro discharge machined Ti6Al4V surface. Materials Letters 58(17–18):2231–2237. doi:10.1016/j.matlet.2004.01.037 CrossRefGoogle Scholar
  77. 77.
    Okada A, Yamauchi T, Arizono K, Shimizu T, Uno Y (2008) Development of coat wire electrode for high performance WEDM (2nd report)—fundamental WEDM characteristics of Φ50 μm coating wire. J Japan Soc Electrical Machining Engrs 42:12–19CrossRefGoogle Scholar
  78. 78.
    Okada A, Yamauchi T, Arizono K, Uno Y (2008) Effect of surface quality of brass coating wire on Wire EDM characteristics. Journal of Advanced Mechanical Design, Systems, and Manufacturing 2(4):735–741CrossRefGoogle Scholar
  79. 79.
    Okada A, Yamauchi T, Higashi M, Shimizu T, Uno Y (2009) Development of coated wire electrode for high-performance WEDM (3rd report)—effects of wire surface unevenness on wire EDM characteristics. J Japan Soc Electrical Machining Engrs 43:179–186CrossRefGoogle Scholar
  80. 80.
    Okada A, Yamauchi T, Nakazawa M, Shimizu T, Uno Y (2011) Development of coated wire electrode for high-performance WEDM (4th report)—effects of high-resistance layer on wire electrode on WEDM characteristics. J Japan Soc Electrical Machining Engrs 45:64–70CrossRefGoogle Scholar
  81. 81.
    Kapoor J, Singh S, Khamba JS (2012) Effect of cryogenic treated brass wire electrode on material removal rate in wire electrical discharge machining. Journal of Mechanical Engineering Science 226(11):2750–2758. doi:10.1177/0954406212438804 CrossRefGoogle Scholar
  82. 82.
    Nourbakhsh F, Rajurkar KP, Malshe AP, Cao J (2013) Wire electro-discharge machining of titanium alloy. Procedia CIRP 5 (0):13-18. doi:http://dx.doi.org/10.1016/j.procir.2013.01.003
  83. 83.
    Yan MT, Fang GR, Liu YT, Li JR (2013) Fabrication of polycrystalline diamond wheels by micro wire-EDM using a novel pulse generator. Procedia CIRP 6 (0):203-208. doi:http://dx.doi.org/10.1016/j.procir.2013.03.013
  84. 84.
    Pérez Delgado Y, De Baets P, Bonny K, Carretero Olalla V, Vleugels J, Lawers B, Staia MH (2013) Influence of wire-EDM on high temperature sliding wear behavior of WC10Co(Cr/V) cemented carbide. International Journal of Refractory Metals and Hard Materials 41 (0):198-209. doi:http://dx.doi.org/10.1016/j.ijrmhm.2013.03.013
  85. 85.
    Convers D, Balleys F, Pfau J (1981) Electrode for electrical discharge machining. US 4,287,404Google Scholar
  86. 86.
    Nakai Y, Yamada K, Miyazaki K, Inazawa S, Ezaki S, Kume T (2001) Wire electrode for electro-discharge machining and manufacturing method thereof. US 6,300,587 B1Google Scholar
  87. 87.
    Baumann I, Barthel B (2002) Wire electrode for the spark-erosive cutting of hard metal. US 6,348,667 B2Google Scholar
  88. 88.
    Banzai M, Shibata Y (1990) Wire electrode for wire cut electric discharge machining. US 4,968,867Google Scholar
  89. 89.
    Briffod J (1990) Zinc or cadmium coated, surface oxidized electrode wire for EDM cutting of a workpiece; and method for forming such a wire. US 4,977,303Google Scholar
  90. 90.
    Briffod J-P, Martin R, Pfau J, Bommeli B, Schnellmann D (1982) Wire electrode for cutting an electrode workpiece by electrical discharges. US 4,341,939Google Scholar
  91. 91.
    Lee J-C (2008) Electrode wire with multi-coated layers for electrical discharge machining and method of manufacturing the same. US 2008/0245773 A1Google Scholar
  92. 92.
    Briffod J-P (1993) Multi-layer electrode wire and method for producing the same. US 5,196,665Google Scholar
  93. 93.
    Lacourcelle L (1998) Method of manufacturing a spark erosion electrode wire. US 5,721,414Google Scholar
  94. 94.
    Hermanni H (1990) Wire electrode for use in spark-erosive cutting. US 4924050Google Scholar
  95. 95.
    Tominaga H, Takayama T, Ogura Y, Yamaguchi T (1987) Electrode wire for use in electric discharge machining and process for preparing same. US 4,686,153Google Scholar
  96. 96.
    Negrerie M, Leterrible P, Voirin A (1993) High performance electrode wire for electric discharge machining and process for preparing same. EP 0526361 A1Google Scholar
  97. 97.
    Baker H (1992) ASM metals handbook: alloy phase diagrams, vol 3. ASM INTRENATIONALGoogle Scholar
  98. 98.
    Brandes EA, Brook GB, Smithells CJ (1998) Smithells metals reference book. 7th ed/edited by E.A. Brandes and G.B. Brook. edn. Butterworth-Heinemann, Oxford; BostonGoogle Scholar
  99. 99.
    Groos H, Hermanni H (1990) Eroding electrode, in particular a wire electrode for the sparkerosive working. US 4,935,594Google Scholar
  100. 100.
    Briffod JP (1999) Process for the manufacturing of wires with a brass surface, for the purpose of wire electroerosion. US 5,858,136Google Scholar
  101. 101.
    Ly M (2010) Wire for high-speed electrical discharge machine. US 7,687,738 B2Google Scholar
  102. 102.
    Barthel B, Neuser B (2003) Wire electrode. US 6566622 B1Google Scholar
  103. 103.
    Barthel B, Groos H, Hermanni H, Tauber K (1998) High-strength erosion electrode. WO Patent 1,998,009,764Google Scholar
  104. 104.
    Briffod J-p (1993) Wire electrode for electroerosion cutting. EP 0,521,569Google Scholar
  105. 105.
    Briffod J-P (1993) Multi-layer electrode wire and method for producing the same. US 5196665 AGoogle Scholar
  106. 106.
    Tomalin DS (1999) Electric wire for use in electric discharge machining and process for preparing SAME. US 5,945,010Google Scholar
  107. 107.
    Nakai Y, Kishida H, Ookubo N, Nanjo K, Murayoshi Y, Numano M, Otsuka Y (2001) Wire electrode for electro-discharge machiningGoogle Scholar
  108. 108.
    Chiriotti N, Pinaya RP, Fluekiger R (2002) Electrode for machining a piece by electro-erosion and its process for production. US 6495788 B1Google Scholar
  109. 109.
    Mukherjee KK (1998) Wire electrode for electro-discharge machining and method of manufacturing same. US 5,808,262Google Scholar
  110. 110.
    Baumann I, Nöthe T (2011) Wire electrodes for electrical discharge cutting. US 2011/0290531 A1Google Scholar
  111. 111.
    Ly M, Sanchez G (2012) Electrode wire for spark erosion. US 8,338,735 B2Google Scholar
  112. 112.
    Barthel B, Groos H, Hermanni H (1998) Wire electrode and process for producing a wire electrode, particular for a spark erosion process. US 5,762,726Google Scholar
  113. 113.
    Blanc P, Ly M, Sanchez G (2013) Composite wire for electrical discharge machining. US 8,378,247 B2Google Scholar
  114. 114.
    Tomalin DS (2007) EDM wire. US 2007/0295695 A1Google Scholar
  115. 115.
    Tomalin D (2011) EDM wire. US 8,067,689 B2Google Scholar
  116. 116.
    Cut X-X, Masuzawa A, Fujino M (1991) Study on flushing for EDM (1st report)—proposal of 2D small vibration method and scan-flushing method. J Japan Soc Electrical Machining Engrs 26:1–12Google Scholar
  117. 117.
    Puri AB, Bhattacharyya B (2003) Modelling and analysis of the wire-tool vibration in wire-cut EDM. Journal of Materials Processing Technology 141(3):295–301. doi:10.1016/S0924-0136(03)00280-2 CrossRefGoogle Scholar
  118. 118.
    Tomura S, Kunieda M (2009) Analysis of electromagnetic force in wire-EDM. Precision Engineering 33(3):255–262. doi:10.1016/j.precisioneng.2008.07.004 CrossRefGoogle Scholar
  119. 119.
    Okada A, Uno Y, Nakazawa M, Yamauchi T (2010) Evaluations of spark distribution and wire vibration in wire EDM by high-speed observation. CIRP Annals - Manufacturing Technology 59(1):231–234. doi:10.1016/j.cirp.2010.03.073 CrossRefGoogle Scholar
  120. 120.
    Iwata Y, Obara H, Ohsumi T, Matsuda Y (1995) Simulation of wire EDM (1st report)—simulating procedure and examples. J Japan Soc Electrical Machining Engrs 29:40–48CrossRefGoogle Scholar
  121. 121.
    Okada A, Oue S, Uno Y, Shouji T, Fukushima T, Terada O (2007) Development of new CuW electrode for high-performance EDM. J Japan Soc Electrical Machining Engrs 41:69–76CrossRefGoogle Scholar
  122. 122.
    Ezaki S, Hasegawa H, Seto H (1991) Electrode wire for electric spark cutting. US 5028756 AGoogle Scholar
  123. 123.
    Kondo I, Nishimoto K (1985) Precisely process of wire electrode EDM. J Japan Soc Electrical Machining Engrs 19:12–27CrossRefGoogle Scholar
  124. 124.
    Mujahid M, Conrad R (1991) Molybdenum base alloy and lead-in wire made therefrom. EP 0275580 B1Google Scholar
  125. 125.
    Menzies I, Koshy P (2008) Assessment of abrasion-assisted material removal in wire EDM. CIRP Annals - Manufacturing Technology 57(1):195–198. doi:10.1016/j.cirp.2008.03.135 CrossRefGoogle Scholar
  126. 126.
    Koshy P, Menzies I (2010) Abrasion assisted wire electrical discharge machining process. US 2010/0012628 A1Google Scholar
  127. 127.
    Ghodsiyeh D, Golshan A, Shirvanehdeh JA (2013) Review on current research trends in wire electrical discharge machining (WEDM). Indian Journal of Science and Technology 6(2):154–168Google Scholar
  128. 128.
    Cheremisinoff NP (1996) Materials selection deskbook. Noyes, New Jersey, U.S.AGoogle Scholar
  129. 129.
    Lee J-C (2006) Method of manufacturing zinc-coated electrode wire for electric discharge processors using hot dip galvanizing process. US 2006/0138091 A1Google Scholar
  130. 130.
    Seong KC (2002) Porous electrode wire for use in electrical discharge machining and method of manufacturing the same. US 6,482,535 B2Google Scholar
  131. 131.
    Schacht B, Verheyen R, Kruth J-P, Lauwers B (2004) An erosion index for wire electrode materials in EDM. Paper presented at the In: Proceedings of ASME international mechanical engineering congress and exposition (IMECE2004), Anaheim, California, 13–19 NovemberGoogle Scholar
  132. 132.
    Banerjee S, Prasad BVSSS (2010) Numerical evaluation of transient thermal loads on a WEDM wire electrode under spatially random multiple discharge conditions with and without clustering of sparks. Int J Adv Manuf Technol 48(5–8):571–580. doi:10.1007/s00170-009-2300-8 CrossRefGoogle Scholar
  133. 133.
    Fukui M, Kinoshita N, Gamo G, Nomura Y (1978) Study on wire EDM (1st report)-wire electrode breaking. J Japan Soc Electrical Machining Engrs 11:89–99CrossRefGoogle Scholar
  134. 134.
    Fukui M, Kinoshita NT, Okuda K (1978) Study on Wire EDM (2nd report)—method for measuring of the precursory phenomena of wire breaking. J Japan Soc Electrical Machining Engrs 12:24–36CrossRefGoogle Scholar
  135. 135.
    Cabanes I, Portillo E, Marcos M, Sánchez JA (2008) On-line prevention of wire breakage in wire electro-discharge machining. Robotics and Computer-Integrated Manufacturing 24(2):287–298. doi:10.1016/j.rcim.2006.12.002 CrossRefGoogle Scholar
  136. 136.
    Yan MT, Liao YS (1996) A self-learning fuzzy controller for wire rupture prevention in WEDM. Int J Adv Manuf Technol 11(4):267–275. doi:10.1007/BF01351284 CrossRefGoogle Scholar
  137. 137.
    Obara H, Iwata Y, Ohsumi T, Yasuda O (1994) An attempt to measure a temperature distribution of wire on wire EDM. J Japan Soc Electrical Machining Engrs 28:21–31CrossRefGoogle Scholar
  138. 138.
    Obara H, Adachi S, Ohsumi T (1997) An attempt to measure a wire temperature distribution on wire EDM—2nd report: averaged wire temperature during EDM. J Japan Soc Electrical Machining Engrs 31:18–25CrossRefGoogle Scholar
  139. 139.
    Murphy KD, Lin Z (2000) The influence of spatially nonuniform temperature fields on the vibration and stability characteristics of EDM wires. International Journal of Mechanical Sciences 42(7):1369–1390. doi:10.1016/S0020-7403(99)00064-8 CrossRefMATHGoogle Scholar
  140. 140.
    Han F, Cheng G, Feng Z, Soichiro I (2009) Measurement of wire electrode temperature in WEDM. Int J Adv Manuf Technol 41(9–10):871–879. doi:10.1007/s00170-008-1546-x CrossRefGoogle Scholar
  141. 141.
    Newton TR, Melkote SN, Watkins TR, Trejo RM, Reister L (2009) Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Materials Science and Engineering: A 513–514:208–215. doi:10.1016/j.msea.2009.01.061 CrossRefGoogle Scholar
  142. 142.
    Caydas U, Hasçalık A, Ekici S (2009) An adaptive neuro-fuzzy inference system (ANFIS) model for wire-EDM. Expert Systems with Applications 36(3):6135–6139. doi:10.1016/j.eswa.2008.07.019 CrossRefGoogle Scholar
  143. 143.
    Li L, Guo YB, Wei XT, Li W (2013) Surface integrity characteristics in wire-EDM of Inconel 718 at different discharge energy. Procedia CIRP 6:220–225. doi:10.1016/j.procir.2013.03.046 CrossRefGoogle Scholar
  144. 144.
    Mohri N, Fukuzawa Y, Tani T, Saito N, Furutani K (1996) Assisting electrode method for machining insulating ceramics. CIRP Annals - Manufacturing Technology 45(1):201–204. doi:10.1016/S0007-8506(07)63047-9 CrossRefGoogle Scholar
  145. 145.
    Lok YK, Lee TC (1997) Processing of advanced ceramics using the wire-cut EDM process. Journal of Materials Processing Technology 63(1–3):839–843. doi:10.1016/S0924-0136(96)02735-5 CrossRefGoogle Scholar
  146. 146.
    Chiang K-T, Chang F-P (2006) Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis. Journal of Materials Processing Technology 180(1–3):96–101. doi:10.1016/j.jmatprotec.2006.05.008 CrossRefGoogle Scholar
  147. 147.
    Magara T, Yatomi T, Kobayashi K (1990) Study on high-precision finishing by wire-EDM—micro-finishing by high-frequency AC source. J Japan Soc Electrical Machining Engrs 24:45–64CrossRefGoogle Scholar
  148. 148.
    Ramakrishnan R, Karunamoorthy L (2006) Multi response optimization of wire EDM operations using robust design of experiments. Int J Adv Manuf Technol 29(1–2):105–112. doi:10.1007/s00170-004-2496-6 CrossRefGoogle Scholar
  149. 149.
    Mahapatra SS, Patnaik A (2007) Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int J Adv Manuf Technol 34(9–10):911–925. doi:10.1007/s00170-006-0672-6 CrossRefGoogle Scholar
  150. 150.
    Kumar K, Agarwal S (2012) Multi-objective parametric optimization on machining with wire electric discharge machining. Int J Adv Manuf Technol 62(5-8):617–633. doi:10.1007/s00170-011-3833-1 CrossRefGoogle Scholar
  151. 151.
    Yang R, Tzeng C, Yang Y, Hsieh M (2012) Optimization of wire electrical discharge machining process parameters for cutting tungsten. Int J Adv Manuf Technol 60(1–4):135–147. doi:10.1007/s00170-011-3576-z CrossRefMATHGoogle Scholar
  152. 152.
    Kumar A, Kumar V, Kumar J (2013) Multi-response optimization of process parameters based on response surface methodology for pure titanium using WEDM process. Int J Adv Manuf Technol 68(9–12):2645–2668. doi:10.1007/s00170-013-4861-9 CrossRefGoogle Scholar
  153. 153.
    Wang T, Masanori K (2001) Study on dry WEDMED surface. Paper presented at the In: Proceedings of XIII ISEM (13th International Symposium for Electro Machining), Bilbao, Spain, 9–11th MayGoogle Scholar
  154. 154.
    Perez Delgado Y, Bonny K, De Baets P, Neis PD, Malek O, Vleugels J, Lauwers B (2011) Impact of wire-EDM on dry sliding friction and wear of WC-based and ZrO2-based composites. Wear 271(9–10):1951–1961. doi:10.1016/j.wear.2010.12.068 CrossRefGoogle Scholar
  155. 155.
    Boopathi S, Sivakumar K (2013) Experimental investigation and parameter optimization of near-dry wire-cut electrical discharge machining using multi-objective evolutionary algorithm. Int J Adv Manuf Technol 67(9–12):2639–2655. doi:10.1007/s00170-012-4680-4 CrossRefGoogle Scholar
  156. 156.
    Nüthe T (2011) Wire electrode for spark-erosion cutting. US20110226743 A1Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ibrahem Maher
    • 1
    • 2
  • Ahmed A. D. Sarhan
    • 1
    • 3
  • M. Hamdi
    • 1
  1. 1.Centre of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringKafrelsheikh UniversityKafrelsheikhEgypt
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations