Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in CNC end milling—ANFIS modeling

  • Ibrahem Maher
  • M. E. H. Eltaib
  • Ahmed A. D. Sarhan
  • R. M. El-Zahry
ORIGINAL ARTICLE

Abstract

Brass and brass alloys are widely employed industrial materials because of their excellent characteristics such as high corrosion resistance, non-magnetism, and good machinability. Surface quality plays a very important role in the performance of milled products, as good surface quality can significantly improve fatigue strength, corrosion resistance, or creep life. Surface roughness (Ra) is one of the most important factors for evaluating surface quality during the finishing process. The quality of surface affects the functional characteristics of the workpiece, including fatigue, corrosion, fracture resistance, and surface friction. Furthermore, surface roughness is among the most critical constraints in cutting parameter selection in manufacturing process planning. In this paper, the adaptive neuro-fuzzy inference system (ANFIS) was used to predict the surface roughness in computer numerical control (CNC) end milling. Spindle speed, feed rate, and depth of cut were the predictor variables. Experimental validation runs were conducted to validate the ANFIS model. The predicted surface roughness was compared with measured data, and the maximum prediction error for surface roughness was 6.25 %, while the average prediction error was 2.75 %.

Keywords

Brass ANFIS Surface roughness CNC End milling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zronik J (2005) Metals shaping our world. Crabtree, CanadaGoogle Scholar
  2. 2.
    Cheremisinoff NP (1996) Materials selection deskbook. Noyes, New JerseyGoogle Scholar
  3. 3.
    Benardos PG, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf 18(5–6):343–354. doi:10.1016/S0736-5845(02)00005-4 CrossRefGoogle Scholar
  4. 4.
    Suresh PVS, Venkateswara Rao P, Deshmukh SG (2002) A genetic algorithmic approach for optimization of surface roughness prediction model. Int J Mach Tools Manuf 42(6):675–680. doi:10.1016/S0890-6955(02)00005-6 CrossRefGoogle Scholar
  5. 5.
    Wang X, Feng C (2002) Development of empirical models for surface roughness prediction in finish turning. Int J Adv Manuf Technol 20(5):348–356CrossRefGoogle Scholar
  6. 6.
    Sayuti M, Sarhan AAD, Tanaka T, Hamdi M, Saito Y (2012) Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system. Int J Adv Manuf Technol 65(9-12):1493--1500Google Scholar
  7. 7.
    Chen J, Huang B (2003) An in-process neural network-based surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations. Int J Adv Manuf Technol 21(5):339–347CrossRefGoogle Scholar
  8. 8.
    Chang H-K, Kim J-H, Kim IH, Jang DY, Han DC (2007) In-process surface roughness prediction using displacement signals from spindle motion. Int J Mach Tools Manuf 47(6):1021–1026. doi:10.1016/j.ijmachtools.2006.07.004 CrossRefGoogle Scholar
  9. 9.
    Singh D, Rao PV (2006) A surface roughness prediction model for hard turning process. Int J Adv Manuf Technol 32(11–12):1115–1124. doi:10.1007/s00170-006-0429-2 Google Scholar
  10. 10.
    Asiltürk İ, Çunkaş M (2011) Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method. Expert Syst Appl 38(5):5826–5832. doi:10.1016/j.eswa.2010.11.041 CrossRefGoogle Scholar
  11. 11.
    Asiltürk İ (2012) Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural networks and multiple regression. Int J Adv Manuf Technol 63(1–4):249–257. doi:10.1007/s00170-012-3903-z CrossRefGoogle Scholar
  12. 12.
    Sayuti M, Sarhan AAD, Fadzil M, Hamdi M (2012) Enhancement and verification of a machined surface quality for glass milling operation using CBN grinding tool—Taguchi approach. Int J Adv Manuf Technol 60(9–12):939–950. doi:10.1007/s00170-011-3657-z CrossRefGoogle Scholar
  13. 13.
    Bagci E, Aykut Ş (2005) A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6). Int J Adv Manuf Technol 29(9–10):940–947. doi:10.1007/s00170-005-2616-y Google Scholar
  14. 14.
    Zalnezhad E, Sarhan AAD, Hamdi M (2013) A fuzzy logic based model to predict surface hardness of thin film TiN coating on aerospace AL7075-T6 alloy. Int J Adv Manuf Technol 68(1–4):415–423. doi:10.1007/s00170-013-4738-y CrossRefGoogle Scholar
  15. 15.
    Kohli A, Dixit US (2004) A neural-network-based methodology for the prediction of surface roughness in a turning process. Int J Adv Manuf Technol 25(1–2):118–129. doi:10.1007/s00170-003-1810-z Google Scholar
  16. 16.
    Abdel Badie S (2011) Prediction of surface roughness in end milling process using intelligent systems: a comparative study. Appl Comput Intel Soft Comput. doi:10.1155/2011/183764 Google Scholar
  17. 17.
    Asiltürk İ, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement. doi:10.1016/j.measurement.2011.07.003 Google Scholar
  18. 18.
    Hasçalık A, Çaydaş U (2007) Optimization of turning parameters for surface roughness and tool life based on the Taguchi method. Int J Adv Manuf Technol 38(9–10):896–903. doi:10.1007/s00170-007-1147-0 Google Scholar
  19. 19.
    Hamdan A, Sarhan AAD, Hamdi M (2012) An optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool for best surface finish. Int J Adv Manuf Technol 58(1–4):81–91. doi:10.1007/s00170-011-3392-5 CrossRefGoogle Scholar
  20. 20.
    Dweiri F, Al-Jarrah M, Al-Wedyan H (2003) Fuzzy surface roughness modeling of CNC down milling of Alumic-79. J Mater Process Tech 133(3):266–275. doi:10.1016/S0924-0136(02)00847-6 CrossRefGoogle Scholar
  21. 21.
    Kilickap E, Huseyinoglu M, Yardimeden A (2010) Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 52(1–4):79–88. doi:10.1007/s00170-010-2710-7 Google Scholar
  22. 22.
    Kumar BS, Baskar N (2012) Integration of fuzzy logic with response surface methodology for thrust force and surface roughness modeling of drilling on titanium alloy. Int J Adv Manuf Technol 65(9–12):1501–1514. doi:10.1007/s00170-012-4275-0 Google Scholar
  23. 23.
    Dong M, Wang N (2011) Adaptive network-based fuzzy inference system with leave-one-out cross-validation approach for prediction of surface roughness. Applied Mathematical Modelling 35(3):1024–1035. doi:10.1016/j.apm.2010.07.048 CrossRefMATHGoogle Scholar
  24. 24.
    Zalnezhad E, Sarhan AD, Hamdi M (2013) Investigating the effects of hard anodizing parameters on surface hardness of hard anodized aerospace AL7075-T6 alloy using fuzzy logic approach for fretting fatigue application. Int J Adv Manuf Technol 68(1–4):453–464. doi:10.1007/s00170-013-4743-1 CrossRefGoogle Scholar
  25. 25.
    Lo S-P (2003) An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. J Mater Process Tech 142(3):665–675. doi:10.1016/S0924-0136(03)00687-3 CrossRefGoogle Scholar
  26. 26.
    Kumanan S, Jesuthanam CP, Ashok Kumar R (2008) Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness. Int J Adv Manuf Technol 35(7–8):778–788. doi:10.1007/s00170-006-0755-4 CrossRefGoogle Scholar
  27. 27.
    Ho S-Y, Lee K-C, Chen S-S, Ho S-J (2002) Accurate modeling and prediction of surface roughness by computer vision in turning operations using an adaptive neuro-fuzzy inference system. Int J Mach Tools Manuf 42(13):1441–1446. doi:10.1016/S0890-6955(02)00078-0 CrossRefGoogle Scholar
  28. 28.
    Lee K-C, Ho S-J, Ho S-Y (2005) Accurate estimation of surface roughness from texture features of the surface image using an adaptive neuro-fuzzy inference system. Precision Eng 29(1):95–100. doi:10.1016/j.precisioneng.2004.05.002 CrossRefGoogle Scholar
  29. 29.
    Jang J-SR, Sun C-T, Mizutani E (1997) Neuro-fuzzy and soft computing : a computational approach to learning and machine intelligence. MATLAB curriculum series. Prentice Hall, Inc, U.S.A.Google Scholar
  30. 30.
    Kasabov NK (1997) Foundations of neural networks, fuzzy systems, and knowledge engineering, vol. 33. MIT, Cambridge. doi:10.1016/S0898-1221(97)84600-7, Computers & Mathematics with Applications, vol 7Google Scholar
  31. 31.
    Zalnezhad E, Sarhan AAD, Hamdi M (2012) Prediction of tin coating adhesion strength on aerospace AL7075-T6 alloy using fuzzy rule based system. Int J Precis Eng Manuf 13(8):1453--1459Google Scholar
  32. 32.
    Ghani JA, Choudhury IA, Hassan HH (2004) Application of Taguchi method in the optimization of end milling parameters. J Mater Process Tech 145(1):84–92. doi:10.1016/S0924-0136(03)00865-3 CrossRefGoogle Scholar
  33. 33.
    Philip PK (1971) Built-up edge phenomenon in machining steel with carbide. Int J Mach Tools Des Res 11(2):121–132. doi:10.1016/0020-7357(71)90021-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ibrahem Maher
    • 1
    • 2
  • M. E. H. Eltaib
    • 3
  • Ahmed A. D. Sarhan
    • 1
    • 3
  • R. M. El-Zahry
    • 3
  1. 1.Centre of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringKafrelsheikh UniversityKafrelsheikhEgypt
  3. 3.Department of Mechanical Engineering, Faculty of EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations