Parameter optimization and mechanism of laser–arc hybrid welding of dissimilar Al alloy and stainless steel

  • Ming Gao
  • Cong Chen
  • Shuwen Mei
  • Lei Wang
  • Xiaoyan Zeng


Laser–cold metal transfer arc hybrid welding of 6061 Al alloy and AISI304 stainless steel (304SS) was carried out. Bead morphologies and intermetallic compound (IMC) layer characterizations of the joints were studied in detail. The optimal parameter range for accepted bead appearances (OPRBA) without surface and interface defects was obtained, and the growth mechanism of the IMC layer was summarized. The results showed that the nonuniformity in the thickness and shape along the fusion zone/304SS interface from the top surface to the bottom increases with increasing heat input and is more sensitive to laser power because the interface temperature is dominated by a high-temperature laser keyhole throughout the molten pool. As the welding parameters are within the OPRBA and the heat input is within the range of 80–110 J/mm, the joints are stronger than 130 MPa and the corresponding IMC layer thickness is at the range of 3–6.5 μm. The kinetic analysis showed that a controlling interface temperature no more than 1,120 °C may limit the growth of the IMC layer.


Dissimilar welding Aluminum alloy Stainless steel Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fridlyander IN, Sister VG, Grushko OE, Berstenev VV, Sheveleva LM, Ivanova LA (2002) Aluminum alloys: promising materials in the automotive industry. Met Sci Heat Treat 44:365–370CrossRefGoogle Scholar
  2. 2.
    Meco S, Pardal G, Ganguly S, Miranda RM, Quintino L, Williams S (2013) Overlap conduction laser welding of aluminium to steel. Int J Adv Manuf Technol 67:647–654CrossRefGoogle Scholar
  3. 3.
    Pardal G, Meco S, Ganguly S, Williams S, Prangnell P (2014) Dissimilar metal laser spot joining of steel to aluminium in conduction mode. Int J Adv Manuf Technol. doi: 10.1007/s00170-014-5802-y Google Scholar
  4. 4.
    Ogura T, Nishida T, Tanaka Y, Nishida H, Yoshikawa S, Fujimoto M, Hirose A (2013) Microscale evaluation of mechanical properties of friction stir welded A6061 aluminium alloy/304 stainless steel dissimilar lap joint. Sci Technol Weld Join 18:108–113CrossRefGoogle Scholar
  5. 5.
    Das H, Basak S, Das G, Pal TK (2013) Influence of energy induced from processing parameters on the mechanical properties of friction stir welded lap joint of aluminum to coated steel sheet. Int J Adv Manuf Technol 64:1653–1661CrossRefGoogle Scholar
  6. 6.
    Sahin M (2009) Joining of stainless-steel and aluminum materials by friction welding. Int J Adv Manuf Technol 41:487–497CrossRefGoogle Scholar
  7. 7.
    Kuroda S, Saida K, Nishimoto K (1999) Microstructure and properties of directly bonded joint of A6061 aluminum alloy to SUS316 stainless steel-study on diffusion bonding of aluminum alloy to stainless steel (report 1). Quart J Jpn Weld Soc 17:484–489CrossRefGoogle Scholar
  8. 8.
    Liu P, Li Y, Wang J, J G (2003) Vacuum brazing technology and microstructure near the interface of Al/18-8 stainless steel. Mater Res Bull 38:1493–1499CrossRefGoogle Scholar
  9. 9.
    Dharmendra C, Rao KP, Wilden J (2011) Study on laser welding-brazing of zinc coated steel to aluminum alloy with a zinc based filler. Mater Sci Eng A 528:1497–1503CrossRefGoogle Scholar
  10. 10.
    Qin GL, Su YH, Wang SJ (2012) Microstructures and properties of pulsed MIG arc brazed-fusion welded joint of Al alloy and galvanized steel. Acta Metall Sin 48:1018–1024Google Scholar
  11. 11.
    Xu GX, Wu CS, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser + pulsed GMAW hybrid welding processes. Int J Adv Manuf Technol 57:245–255CrossRefGoogle Scholar
  12. 12.
    Yan J, Gao M, Li G, Zhang C, Zeng XY, Jiang M (2013) Microstructure and mechanical properties of laser-MIG hybrid welding of 1420 Al-Li alloy. Int J Adv Manuf Tech 66:1467–1473CrossRefGoogle Scholar
  13. 13.
    Tan CW, Li LQ, Chen YB, Guo W (2013) Laser-tungsten inert gas hybrid welding of dissimilar metals AZ31B Mg alloys to Zn coated steel. Mater Des 49:766–773CrossRefGoogle Scholar
  14. 14.
    Qi XD, Liu LM (2012) Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser–tungsten inert gas welding technique. Mater Des 33:436–443CrossRefMathSciNetGoogle Scholar
  15. 15.
    Mei SW, Gao M, Yan J, Zhang C, Li G, Zeng XY (2013) Interface properties and thermodynamic analysis of laser arc hybrid welded Al/steel joint. Sci Technol Weld Join 18:293–300CrossRefGoogle Scholar
  16. 16.
    Gao M, Chen C, Gu Y, Zeng XY (2014) Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti alloys. Materials 7:1590–1602Google Scholar
  17. 17.
    Song JL, Lin SB, Yang CL, Fan CL (2009) Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint. J Alloys Compd 488:217–222CrossRefGoogle Scholar
  18. 18.
    Song JL, Lin SB, Yang CL, Ma GC, Liu H (2009) Spreading behavior and microstructure characteristics of dissimilar metals TIG welding–brazing of aluminum alloy to stainless steel. Mater Sci Eng A 509:31–40CrossRefGoogle Scholar
  19. 19.
    Paulini J, Simon G (1993) A theoretical lower limit for laser power in laser-enhanced arc welding. J Phys D Appl Phys 26:1523–1527CrossRefGoogle Scholar
  20. 20.
    Mahrle A, Beyer E (2006) Hybrid laser beam welding—classification, characteristics, and applications. J Laser Appl 18:169–180CrossRefGoogle Scholar
  21. 21.
    Kishore NL, Jay FT, Mark G (1996) A model for estimating penetration depth of laser welding processes. J Phys D Appl Phys 29:1831–1841CrossRefGoogle Scholar
  22. 22.
    Kou S (2002) Welding metallurgy, 2nd edn. Wiley, New Jersey, p 46, Chap 2. Heat flow in weldingCrossRefGoogle Scholar
  23. 23.
    Liu BJ (1995) The hot–dip aluminizing of steel. Metallurgical Industry Press, Beijing, p 30 (In Chinese)Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ming Gao
    • 1
  • Cong Chen
    • 1
  • Shuwen Mei
    • 1
  • Lei Wang
    • 1
  • Xiaoyan Zeng
    • 1
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations