A tool-path generation strategy for wire and arc additive manufacturing

  • Donghong DingEmail author
  • Zengxi (Stephen) Pan
  • Dominic Cuiuri
  • Huijun Li


This paper presents an algorithm to automatically generate optimal tool-paths for the wire and arc additive manufacturing (WAAM) process for a large class of geometries. The algorithm firstly decomposes 2D geometries into a set of convex polygons based on a divide-and-conquer strategy. Then, for each convex polygon, an optimal scan direction is identified and a continuous tool-path is generated using a combination of zigzag and contour pattern strategies. Finally, all individual sub-paths are connected to form a closed curve. This tool-path generation strategy fulfils the design requirements of WAAM, including simple implementation, a minimized number of starting-stopping points, and high surface accuracy. Compared with the existing hybrid method, the proposed path planning strategy shows better surface accuracy through experiments on a general 3D component.


Arc welding Tool-path generation Geometry decomposition Additive manufacturing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipson H (2012) Frontiers in additive manufacturing. Bridge 42:5–12Google Scholar
  2. 2.
    Agarwala M et al (1995) Direct selective laser sintering of metals. Rapid Prototyp J 1:26–36CrossRefGoogle Scholar
  3. 3.
    Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser assisted direct metal deposition. Mater Des 21:417–423CrossRefGoogle Scholar
  4. 4.
    Taminger KM, and Hafley RA 2003 Electron beam freeform fabrication: a rapid metal deposition process. In Proceedings of the 3rd Annual Automotive Composites Conference, pp. 9–10Google Scholar
  5. 5.
    Merz R et al (1994) Shape deposition manufacturing. Engineering Design Research Center, Carnegie Mellon UnivGoogle Scholar
  6. 6.
    Almeida PS, Williams S (2010) Innovative process model of Ti–6Al–4V additive layer manufacturing using cold metal transfer (CMT). In Proceedings of the Twenty-first Annual International Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, TX, USA, 2010Google Scholar
  7. 7.
    Ding J et al (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50:3315–3322CrossRefGoogle Scholar
  8. 8.
    Wang F et al (2011) Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. Int J Adv Manuf Technol 57:597–603CrossRefGoogle Scholar
  9. 9.
    Suryakumar S et al (2011) Weld bead modeling and process optimization in hybrid layered manufacturing. Comput Aided Des 43:331–344CrossRefGoogle Scholar
  10. 10.
    Martina F et al (2012) Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol 212:1377–1386CrossRefGoogle Scholar
  11. 11.
    Zhang Y et al (2003) Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol 135:347–357CrossRefGoogle Scholar
  12. 12.
    Xiong X et al (2009) Metal direct prototyping by using hybrid plasma deposition and milling. J Mater Process Technol 209:124–130CrossRefGoogle Scholar
  13. 13.
    Karunakaran K et al (2010) Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf 26:490–499CrossRefGoogle Scholar
  14. 14.
    Dunlavey MR (1983) Efficient polygon-filling algorithms for raster displays. ACM Trans Graph 2:264–273CrossRefGoogle Scholar
  15. 15.
    Park SC, Choi BK (2000) Tool-path planning for direction-parallel area milling. Comput Aided Des 32:17–25CrossRefGoogle Scholar
  16. 16.
    Rajan V et al (2001) The optimal zigzag direction for filling a two-dimensional region. Rapid Prototyp J 7:231–241CrossRefGoogle Scholar
  17. 17.
    Farouki R et al (1995) Path planning with offset curves for layered fabrication processes. J Manuf Syst 14:355–368CrossRefGoogle Scholar
  18. 18.
    Yang Y et al (2002) Equidistant path generation for improving scanning efficiency in layered manufacturing. Rapid Prototyp J 8:30–37CrossRefGoogle Scholar
  19. 19.
    Li H et al (1994) Optimal toolpath pattern identification for single island, sculptured part rough machining using fuzzy pattern analysis. Comput Aided Des 26:787–795CrossRefGoogle Scholar
  20. 20.
    Wang H et al (2005) A metric-based approach to two-dimensional (2D) tool-path optimization for high-speed machining. Trans Am Soc Mech Eng J Manuf Sci Eng 127:33Google Scholar
  21. 21.
    Ren F et al (2009) Combined reparameterization-based spiral toolpath generation for five-axis sculptured surface machining. Int J Adv Manuf Technol 40:760–768CrossRefGoogle Scholar
  22. 22.
    Kulkarni P et al (2000) A review of process planning techniques in layered manufacturing. Rapid Prototyp J 6:18–35CrossRefGoogle Scholar
  23. 23.
    Bertoldi M, et al (1998) Domain decomposition and space filling curves in toolpath planning and generation. In Proceedings of the 1998 Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, Texas, 1998, pp. 267–74Google Scholar
  24. 24.
    Chiu W et al (2006) Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyp J 12:214–221CrossRefGoogle Scholar
  25. 25.
    Wasser T et al (1999) Implementation and evaluation of novel buildstyles in fused deposition modeling (FDM). Strain 5:6Google Scholar
  26. 26.
    Dwivedi R, Kovacevic R (2004) Automated torch path planning using polygon subdivision for solid freeform fabrication based on welding. J Manuf Syst 23:278–291CrossRefGoogle Scholar
  27. 27.
    Jin G et al (2013) An adaptive process planning approach of rapid prototyping and manufacturing. Robot Comput Integr Manuf 29:23–38CrossRefGoogle Scholar
  28. 28.
    Sheng W et al. (2003) Surface partitioning in automated CAD-guided tool planning for additive manufacturing, in intelligent robots and systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, pp. 2072–2077Google Scholar
  29. 29.
    Keil JM (2000) Polygon decomposition. Handb Comput Geom 2:491–518CrossRefMathSciNetGoogle Scholar
  30. 30.
    Volpato N et al (2013) Identifying the directions of a set of 2D contours for additive manufacturing process planning. Int J Adv Manuf Technol 68:33–43CrossRefGoogle Scholar
  31. 31.
    De Berg M, et al. (eds) (2000) Computational geometry. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Donghong Ding
    • 1
    Email author
  • Zengxi (Stephen) Pan
    • 1
  • Dominic Cuiuri
    • 1
  • Huijun Li
    • 1
  1. 1.School of Mechanical, Materials & Mechatronic, Faculty of Engineering and Information SciencesUniversity of WollongongWollongongAustralia

Personalised recommendations