Statistical modelling of weld bead geometry in oscillating arc narrow gap all-position GMA welding

  • W. H. Xu
  • S. B. LinEmail author
  • C. L. Fan
  • X. Q. Zhuo
  • C. L. Yang


In this work, the oscillating arc narrow gap all-position gas metal arc (GMA) welding process was developed to improve efficiency and quality in the welding of thick-walled pipes. The statistical models of narrow gap all-position GMA weld bead geometry were developed using response surface methodology (RSM) based on central composite design (CCD). The developed models were checked for their adequacy and significance by ANOVA, and the effects of wire feed rate, travel speed, dwell time, oscillating amplitude and welding position on weld bead dimension were studied. Finally, the optimal welding parameters at welding positions of 0° to 180° were obtained by numerical optimization using RSM.


Narrow gap welding All-position welding GMA welding Weld bead geometry CCD RSM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Christensen KH, Sørensen T, Kristensen J (2005) Gas metal arc welding of butt joint with varying gap width based on neural networks. Sci Technol Weld Join 10(1):32–43. doi: 10.1179/174329305X19303 CrossRefGoogle Scholar
  2. 2.
    Malin VY (1983) State-of-the-art of narrow gap welding. Weld J 62(Compendex):22–30Google Scholar
  3. 3.
    Wang JY, Ren YS, Yang F, Guo HB (2007) Novel rotation arc system for narrow gap MAG welding. Sci Technol Weld Join 12(6):505–507. doi: 10.1179/174329307x213756 CrossRefGoogle Scholar
  4. 4.
    Murakami S, Kitagawa A, Nakajima H, Nagai A, Yonezawa M (1986) A study on horizontal narrow gap welding for heavy plates. Hitachi Zosen Technol Rev 47(1):33–38Google Scholar
  5. 5.
    Hirakoso K, Kano M, Nomura K (1980) Welding apparatus with shifting magnetic field. U.S Patent 4190760 A, 26 FebGoogle Scholar
  6. 6.
    Guo N, Lin SB, Gao C, Fan CL, Yang CL (2009) Study on elimination of interlayer defects in horizontal joints made by rotating arc narrow gap welding. Sci Technol Weld Join 14(6):584. doi: 10.1179/136217109X456942 CrossRefGoogle Scholar
  7. 7.
    Min D, Xin-hua T, Feng-gui L, Shun Y (2010) Welding of quenched and tempered steels with high-spin arc narrow gap MAG system. Int J Adv Manuf Technol 55(5–8):527–533. doi: 10.1007/s00170-010-3052-1 Google Scholar
  8. 8.
    Wang J, Zhu J, Fu P, Su R, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. Isij Int 52(1):110–114CrossRefGoogle Scholar
  9. 9.
    Xu WH, Lin SB, Fan CL, Yang CL (2012) Feasibility study on tandem narrow gap GMAW of 65 mm thick steel plate. China Weld 21(3):7–11Google Scholar
  10. 10.
    Lassaline E, Zajaczkowski B, North TH (1989) Narrow groove twin-wire GMAW of high-strength steel. Weld J 68(9):53–58Google Scholar
  11. 11.
    Manonmani K, Murugan N, Buvanasekaran G (2007) Effects of process parameters on the bead geometry of laser beam butt welded stainless steel sheets. Int J Adv Manuf Technol 32(11–12):1125–1133. doi: 10.1007/s00170-006-0432-7 CrossRefGoogle Scholar
  12. 12.
    Kim IS, Basu A, Siores E (1996) Mathematical models for control of weld bead penetration in the GMAW process. Int J Adv Manuf Technol 12(6):393–401. doi: 10.1007/BF01186927 CrossRefGoogle Scholar
  13. 13.
    Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 88(1):266–275. doi: 10.1016/S0924-0136(98)00405-1 CrossRefGoogle Scholar
  14. 14.
    Koleva E (2005) Electron beam weld parameters and thermal efficiency improvement. Vacuum 77(4):413–421. doi: 10.1016/j.vacuum.2004.09.002 CrossRefGoogle Scholar
  15. 15.
    Starling C, Marques PV, Modenesi PJ (1995) Statistical modelling of narrow-gap GTA welding with magnetic arc oscillation. J Mater Process Technol 51(1):37–49. doi: 10.1016/0924-0136(94)01356-6 CrossRefGoogle Scholar
  16. 16.
    Kim J, Kim I, Lee J, Jung S (2011) An experimental study on the prediction of back-bead geometry in pipeline using the GMA welding process. Int Sci J 49(1):53–61Google Scholar
  17. 17.
    Badkar DS, Pandey KS, Buvanashekaran G (2012) Application of the central composite design in optimization of laser transformation hardening parameters of commercially pure titanium using Nd:YAG laser. Int J Adv Manuf Technol 59(1–4):169–192. doi: 10.1007/s00170-011-3492-2 CrossRefGoogle Scholar
  18. 18.
    Ii EJL, Torres GCF, Felizardo I, Filho FAR, Bracarense AQ (2005) Development of a robot for orbital welding. Ind Robot: Int J 32(4):321–325. doi: 10.1108/01439910510600182 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • W. H. Xu
    • 1
  • S. B. Lin
    • 1
    Email author
  • C. L. Fan
    • 1
  • X. Q. Zhuo
    • 1
  • C. L. Yang
    • 1
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations