Stress in the surface layer of objects burnished after milling

  • Daniel GrochałaEmail author
  • Stefan Berczyński
  • Zenon Grządziel


This paper presents the effects of modeling the stress in the burnished layer of a complex spatial surface that was previously milled. A spatial kinematic-geometric model of the surface structure after milling is used. This paper presents the results of a numerical experiment on the synergic influence of the technological milling and burnishing parameters responsible for the final state of the geometric structure of a surface on the post-machining stress in the surface layer. The stress in the surface layer plays an important role because it is frequently responsible for the development of cracks, corrosion, and cavitation (in the surface area of injection aluminum molds, press tools, and core cutters). A proper understanding of the mechanisms responsible for the origin and development of residual stress will be conducive to the improvement of functional properties and longer tool life.


Ball burnishing 3D burnishing model Residual stress Roughness topography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El-Khabeery MM, El-Axir MH (2001) Experimental techniques for studying the effects of milling roller-burnishing parameters on surface integrity. Int J Mach Tools Manuf 41:1705–1719CrossRefGoogle Scholar
  2. 2.
    Grochała D (2011) Nagniatanie narzędziami hyrostatycznymi powierzchni przestrzennych złożonych na frezarkach CNC, Dissertation, West Pomeranian University of Technology Szczecin
  3. 3.
    Korzynski M, Lubas J, Swirad S, Dudek K (2011) Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J Mater Process Technol 211:84–94CrossRefGoogle Scholar
  4. 4.
    Lopez de Lacalle LN, Lamikiz A, Munoa J, Sanchez JA (2005) Quality improvement of ball-end milled sculptured surfaces by ball burnishing. Int J Mach Tools Manuf 45:1659–1668CrossRefGoogle Scholar
  5. 5.
    Lopez de Lacalle LN, Lamikiz A, Sanchez JA, Arana JL (2007) The effect of ball burnishing on heat-treated steel and inconel 718 milled surfaces. Int J Adv Manuf Technol 32:958–968CrossRefGoogle Scholar
  6. 6.
    Rodríguez A, López de Lacalle LN, Celaya A, Lamikiz A, Albizuri J (2012) Surface improvement of shafts by the deep ball-burnishing technique. Surf Coat Technol 206:2817–2824CrossRefGoogle Scholar
  7. 7.
    Shiou FJ, Chen CH (2003) Determination of optimal ball-burnishing parameters for plastic injection moulding steel. Int J Adv Manuf Technol 3:177–185Google Scholar
  8. 8.
    Shiou FJ, Chen CH (2008) Ultra-precision surface finish of NAK80 mould tool steel using sequential ball burnishing and ball polishing processes. J Mater Process Technol 201:554–559CrossRefGoogle Scholar
  9. 9.
    Shiou FJ, Chuang CH (2010) Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell, Precis. Engineering 34:76–84Google Scholar
  10. 10.
    Stalin JMR, Vinayagam BK (2011) Optimization of ball burnishing process on tool steel (t215cr12) in CNC machining centre using response surface methodology. Arab J Sci Eng 36:1407–1422CrossRefGoogle Scholar
  11. 11.
    Benardos PG, Vosniakos G-C (2003) Predicting surface roughness in machining a review. Int J Mach Tools Manuf 43:833–844CrossRefGoogle Scholar
  12. 12.
    Balland P, Tabourot L, Degre F, Moreau V (2013) Mechanics of the burnishing process, Precis. Engineering 37:129–134Google Scholar
  13. 13.
    Bougharriou A, Saï WB, Saï K (2010) Prediction of surface characteristics obtained by burnishing. Int J Adv Manuf Technol 51:205–215CrossRefGoogle Scholar
  14. 14.
    Sartkulvanich P (2007) Determination of material properties for use in FEM simulations of machining and roller burnishing: dissertation The Ohio State UniversityGoogle Scholar
  15. 15.
    Deng WJ, Xia W, Zhou ZY, Chen WP, Li YY (2004) Finite element analysis of effects of ball burnishing parameters on residual stresses. Mater Sci Forum 471–472:658–662CrossRefGoogle Scholar
  16. 16.
    Product catalogue of ECOROLL, Werkzeugtechnologie fuer die Oberflächenveredelung, E-Publishing
  17. 17.
    Senczyk D (2005) Podstawy tensometrii rentgenowskiej, Wydawnictwo Politechniki Poznańskiej ISBN 83-7143234-7Google Scholar
  18. 18.
    Zienkiewicz OC, Taylor RL, Zhu JZ (2005) Finite element method its basis & fundamentals, 6th edn. Elsevier, Butterworth-Heinemann. ISBN-13:9780750663205Google Scholar

Copyright information

© The Author(s) 2014

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Daniel Grochała
    • 1
    • 2
    Email author
  • Stefan Berczyński
    • 1
    • 2
  • Zenon Grządziel
    • 3
    • 4
  1. 1.Institute of Mechanical TechnologyWest Pomeranian University of Technology SzczecinSzczecinPoland
  2. 2.Faculty of Mechanical Engineering and Mechatronics, Institute of Manufacturing EngineeringWest Pomeranian University of TechnologySzczecinPoland
  3. 3.Institute of Fundamental Engineering SciencesMaritime University of SzczecinSzczecinPoland
  4. 4.Department of Mechanical Engineering, Institute of Fundamental Sciences and TechnologyMaritime University of SzczecinSzczecinPoland

Personalised recommendations